Differential Equations

Thomas R. Cameron

September 29, 2023

1 Daily Quiz

Find a particular solution to the non-homogeneous differential equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=3 t+5 .
$$

2 Key Topics

Today we introduce the method of variation of parameters to find a particular solution of the second-order linear non-homogeneous differential equation:

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t) \tag{1}
\end{equation*}
$$

where $y:=y(t)$ is a differentiable function. For further reading, see [2, Section 5.7] or [1, Section 4.2].

2.1 Variation of Parameters

Let $\left\{y_{1}, y_{2}\right\}$ form a fundamental set for the complementary homogeneous equation of (1). We seek a particular of the form

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2}, \tag{2}
\end{equation*}
$$

where $u_{1}:=u_{1}(t)$ and $u_{2}:=u_{2}(t)$ are differentiable functions. The fact that y_{p} must satisfy (1) gives us one condition on u_{1} and u_{2}. In order to determine u_{1} and u_{2} uniquely, we need impose the following second condition

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

Then, differentiating (2) gives

$$
\begin{equation*}
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \tag{3}
\end{equation*}
$$

Differentiating again gives

$$
\begin{equation*}
y_{p}^{\prime \prime}=u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime} \tag{4}
\end{equation*}
$$

Substituting (2), (3), and (4) into (1) gives

$$
\left(u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p(t)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+q(t)\left(u_{1} y_{1}+u_{2} y_{2}\right)=f(t)
$$

which we rewrite as follows

$$
u_{1}\left(y_{1}^{\prime}+p(t) y_{1}^{\prime}+q(t) y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}\right)+\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=f(t) .
$$

Since $\left\{y_{1}, y_{2}\right\}$ is a fundamental set for the complementary homogeneous differential equation, it follows that the terms next to u_{1} and u_{2} are both zero. Therefore, the functions u_{1}^{\prime} and u_{2}^{\prime} must satisfy the following

$$
\begin{align*}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2} & =0 \tag{5}\\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime} & =f(t) \tag{6}
\end{align*}
$$

We can solve this system of equations for u_{1}^{\prime} and u_{2}^{\prime} as follows

$$
\begin{align*}
u_{1}^{\prime} & =-\frac{y_{2} f(t)}{W\left(y_{1}, y_{2}\right)} \tag{7}\\
u_{2}^{\prime} & =\frac{y_{1} f(t)}{W\left(y_{1}, y_{2}\right)} \tag{8}
\end{align*}
$$

By integrating the above equations, we can find a particular solution of (1) in the form of (2).

3 Exercises

Find the general solution for each of the following differential equations.
I. $y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}$
II. $y^{\prime \prime}+y=\tan (t)$

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

