Differential Equations

Thomas R. Cameron

September 5, 2023

1 Daily Quiz

Multiply both sides of the following differential equation by the factor $\mu=t$:

$$
\left(3 t y+y^{2}\right)+\left(t^{2}+t y\right) y^{\prime}=0
$$

and show that the differential equation becomes exact.

2 Key Topics

Today we consider first-order differential equations that can be written in the following form

$$
\begin{equation*}
n(t, y) y^{\prime}+m(t, y)=0 \tag{1}
\end{equation*}
$$

and integration factors $\mu:=\mu(t, y)$ that transform the differential equation into an exact differential equation. For further reading, see [1, Section 2.6]

Once the differential equation in (1) is transformed to an exact equation, the general solution is found by constructing $F(t, y)$ such that the differential can be written as

$$
\frac{d}{d t} F(t, y)=0
$$

which has a general solution of $F(t, y)=C$.
Example 2.1. The differential equation below is exact

$$
\left(3 t^{2} y+t y^{2}\right)+\left(t^{3}+t^{2} y\right) y^{\prime}=0
$$

Define

$$
F(t, y)=\left(t^{3} y+\frac{1}{2} t^{2} y^{2}\right)+h(y)
$$

and note that

$$
\frac{\partial F(t, y)}{\partial y}=\left(t^{3}+t^{2} y\right)+h^{\prime}(y)
$$

Therefore, $\frac{\partial F}{\partial y}=n(t, y)$ implies that $h^{\prime}(y)=0$. Hence, we can set $h(y)=0$ and it follows that the general solution of the differential equation is given by

$$
t^{3} y+\frac{1}{2} t^{2} y^{2}=C
$$

2.1 Transforming to Exact Differential Equations

Recall the following theorem, which we proved on $9 / 1 / 2023$.
Theorem 2.2. Suppose that the functions $n(t, y)$ and $m(t, y)$ and their partial derivatives are continuous. Then, the differential equation in (1) is exact if and only if

$$
\begin{equation*}
\frac{\partial}{\partial y} m(t, y)=\frac{\partial}{\partial t} n(t, y) . \tag{2}
\end{equation*}
$$

Now, multiply both sides of the differential equation in (1) by the factor μ :

$$
\mu(t, y) n(t, y) y^{\prime}+\mu(t, y) m(t, y)=0
$$

Then, the resulting differential equation is exact if and only if

$$
\frac{\partial}{\partial y} \mu(t, y) m(t, y)=\frac{\partial}{\partial t} \mu(t, y) n(t, y)
$$

Taking the partial derivatives on both sides gives us

$$
m(t, y) \frac{\partial \mu(t, y)}{\partial y}+\mu(t, y) \frac{\partial m(t, y)}{\partial y}=n(t, y) \frac{\partial \mu(t, y)}{\partial t}+\mu(t, y) \frac{\partial n(t, y)}{\partial t}
$$

which is a partial differential equation with unknown function μ. If we denote the partial derivatives as subscripts, then the above partial differential equation can be written as

$$
\begin{equation*}
m \mu_{y}-n \mu_{t}=\mu\left(n_{t}-m_{y}\right) \tag{3}
\end{equation*}
$$

Sometimes the factor μ can be written as a function of a single variable, either t or y, exclusively. If $\mu:=\mu(t)$, then (3) becomes

$$
\begin{equation*}
\frac{d}{d t} \mu=\mu\left(\frac{m_{y}-n_{t}}{n}\right) \tag{4}
\end{equation*}
$$

If $\mu:=\mu(y)$, then (3) becomes

$$
\begin{equation*}
\frac{d}{d y} \mu=\mu\left(\frac{n_{t}-m_{y}}{m}\right) . \tag{5}
\end{equation*}
$$

3 Exercises

Transform each differential equation to exact with an integration factor $\mu:=\mu(t)$ or $\mu:=\mu(y)$. Then, find the general solution of the exact differential equation.
a. Use (4) or (5) to ind the factor μ for the following differential equation

$$
\left(3 t y+y^{2}\right)+\left(t^{2}+t y\right) y^{\prime}=0
$$

b. Use (4) or (5) to ind the factor μ for the following differential equation

$$
\left(3 t^{2} y^{2}+t^{2} y^{3}+1\right) y^{\prime}+2 t y^{3}=0
$$

Then, find the general solution to this differential equation.

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

