Differential Equations

Thomas R. Cameron

September 6, 2023

1 Daily Quiz

Find a factor μ that transforms the following to an exact differential equation:

$$
\left(6 t y^{2}+2 y\right)+\left(12 t^{2} y+6 t+3\right) y^{\prime}=0
$$

2 Key Topics

Today we consider the existence and uniqueness of solutions to the first-order initial value problem:

$$
\begin{equation*}
y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0} . \tag{1}
\end{equation*}
$$

For further reading, see [2, Section 2.3] and [1, Section 1.6].

3 Existence and Uniqueness Theorem

The following theorem provides sufficient conditions for when a first-order initial value problem has a unique solution.

Theorem 3.1. Let f and $\frac{\partial f}{\partial y}$ be continuous on the rectangle

$$
R=\left\{(t, y):\left|t-t_{0}\right| \leq a,\left|y-y_{0}\right| \leq b\right\}
$$

then the initial value problem (1) has a unique solution $y(t)$ on the interval

$$
\left|t-t_{0}\right| \leq \min \left\{a, \frac{b}{M}\right\}
$$

where $M=\max _{R}|f(t, y)|$.
While a proof of Theorem 3.1 is outside the scope of our course, we can demonstrate its sufficiency for guaranteeing the existence and uniqueness of a solution using the method of successive approximations or Picard's method.

Let $\phi_{0}(t)$ be any differentiable function of t that satisfies the initial condition in (1), i.e., $\phi_{0}\left(t_{0}\right)=y_{0}$. Then, for any integer $n \geq 1$, define $\phi_{n}(t)$ as the antiderivative of $f\left(t, \phi_{n-1}(t)\right)$ that satisfies the initial condition in (1). This method of successive approximations constructs a sequence of functions

$$
\phi_{0}(t), \phi_{1}(t), \phi_{2}(t), \ldots,
$$

which can be used to prove Theorem 3.1 by showing the following
I. All members of the sequence $\left\{\phi_{n}(t)\right\}_{n=0}^{\infty}$ are well-defined
II. $\phi(t)=\lim _{n \rightarrow \infty} \phi_{n}(t)$ exists.
III. $\phi(t)$ satisfies the initial value problem (1).
IV. $\phi(t)$ is the only solution to the initial value problem (11).

Example 3.2. Consider the initial value problem

$$
y^{\prime}=2 t(1+y), y(0)=0
$$

Define $\phi_{0}(t)=0$. Then, the method of successive approximations finds

$$
\begin{aligned}
\phi_{1}(t) & =\int_{0}^{t} 2 s\left(1+\phi_{0}(s)\right) d s=\int_{0}^{t} 2 s d s=t^{2} \\
\phi_{2}(t) & =\int_{0}^{t} 2 s\left(1+s^{2}\right) d s=\int_{0}^{t}\left(2 s+2 s^{3}\right) d s=t^{2}+\frac{1}{2} t^{4} \\
\phi_{3}(t) & =\int_{0}^{t} 2 s\left(1+s^{2}+\frac{1}{2} s^{4}\right) d s=\int_{0}^{t}\left(2 s+2 s^{3}+s^{5}\right) d s=t^{2}+\frac{1}{2} t^{4}+\frac{1}{6} t^{6} \\
& \vdots \\
\phi_{n}(t) & =t^{2}+\frac{1}{2!} t^{4}+\frac{1}{3!} t^{6}+\cdots+\frac{1}{n!} t^{2 n}
\end{aligned}
$$

Recall the Taylor series for e^{t} centered at 0 :

$$
e^{t}=1+t+\frac{1}{2!} t^{2}+\frac{1}{3!} t^{3}+\cdots
$$

Hence,

$$
\lim _{n \rightarrow \infty} \phi_{n}(t)=e^{t^{2}}-1
$$

4 Exercises

Consider the initial value problem

$$
y^{\prime}=y^{2 / 3}, y(0)=0
$$

Show that $y(t)=0$ and $u(t)=\frac{1}{27} t^{3}$ are both solutions to the given IVP. Why does this example not violate Theorem 3.1

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

