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1 Partitions
A partition P of the interval [a, ] is a finite set of points {zg,x1,...,2Z,} in [a,b] such that
a=zr9g<x1 < -<xy="0

If P and @ are both partitions of [a,b] and P C @, then Q is called a refinement of P.

For example,
113
P=4<0,-,-,-,1
{7472747 }

is a partition of the interval [0,1]. Similarly,

is a partition of the interval [0, 1]. Since P C @, Q is a refinement of P.

2 Darboux Sums

Suppose that f: [a,b] — R is bounded and let P = {xq,x1,...,z,} be a partition of [a,b]. Then, the upper
Darboux sum of f with respect to P is defined by

i=1
and the lower Darboux sum of f with respect to P is defined by
L(f,P) =) miAw;,

i=1

where M; = sup{f(z): € [vi—1, 2]}, mi = inf{f(z): = € [z;_1,2;]}, and Az; = x; — z;_1. Note that,
since f is bounded, the existence of the infimum and supremum of f(z) over [z;_1, ;] is guaranteed by the
completeness axiom.

As an example, define f: [0,1] — R by

1 ifzeq,
f(x){o itz ¢ Q.

Let P = {xg,x1,...,2,} be any partition of [0, 1]. Then, M; = 1and m; =0foralli € {1,...,n}. Therefore,

L(f,P)=)_0-Az; =0
=1



and

U(f,P)=> 1-Az;=1.
i=1

As another example, define f: [0,1] = R by f(z) = 2. Let n € N and let P = {0,1/n,2/n,...,1} be a
partition of [0,1]. Then, M; =i/n and m; = (i — 1)/n for all ¢ € {1,...,n}. Therefore,

L(f,P):ii‘l.l:@

, n o n 2n2
=1

and
"1 n2+n

U(f.P) = .= =
IR WIEE
As a final example, define f: [0,1] — R by

r if0<x<l,
fl@)y=41 ifz=0,
0 ifz=1.

Let n € Nand let P ={0,1/n,2/n,...,1} be a partition of [0,1]. Then, My =1, M,, = 1, and M; = i/n for
alli € {2,...,n—1}. Also, m; =0, m,, =0, and m; = (i — 1)/n for all i € {2,...,n — 1}. Therefore,

i—1.1+0'l:n2—3n+2
n o n n 2n?

1 n—1
LUJU=UE+Z;

and )
1 i 1 1 n?24n-2 1
U(f,P)=1-— — 41l = — 4+ —.
(£, P) n+§n 1+ n 2n2 +n
The following theorem provides bounds on the upper and lower Darboux sums for partitions and their
refinements.

Theorem 2.1. Let f: [a,b] — R be bounded. Let P and @ are partitions of [a,b] such that Q is a refinement
of P. Then,

L(f,P) < L(f,Q) <U(f,Q) <U(f, P).

Proof. Let z* be a point in [a, b] that is not in P. Then, there is a k € {1,...,n} such that z;_1 < z* < z.
Define

t; = inf{f(z): x € [zr_1, 2]},
to = inf{f(z): = € [z*, zx]},
51 = sup{f(2): @ € 1, 2°]},
so =sup{f(x): z € [z*, x]}.

Then, t1 > my, t2 > mg, s1 < My, and sy < My,
Now, let P* = PU{z*}. Then, the terms in L(f, P*) and L(f, P) are all the same except those over the
subinterval [x_1,2]. Thus, we have

L(f,P*) = L(f,P) = t1(x" —xp—1) + ta(xr — ") — mp(ap — Tp—1)
= (t;1 — my) (2" — 25_1) + (t2 — mg)(zr — ") > 0.

Similarly, the terms in U(f, P*) and U(f, P) are all the same except those over the subinterval [zy_1, zx].
Thus, we have

U(f,P*")—=U(f,P) =s1(z* —x_1) + sa(xr — %) — Mp(xr — 1)
= (81 — M) (" —xp—1) + (s2 — M) (xp — ) <O0.



Therefore, adding points to a partition can only increase the lower Darboux sum and can only decrease the
upper Darboux sum. By repeating this argument to every point in ) that is not in P, we conclude that

L(f,P) < L(f,Q) <U(f,Q) <U(f, P).

The following corollary is an immediate consequence of Theorem [2.1]
Corollary 2.2. Let f: [a,b] = R be bounded. Let P and @ be partitions of [a,b]. Then, L(f,P) < U(f,Q).
Proof. Since P U Q is a refinement of both P and @, Theorem [2.1] implies that

L(f,P) < L(f,PUQ)<U(f,PUQ) <U(f,Q).
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