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1 Partitions

A partition P of the interval [a, b] is a finite set of points {x0, x1, . . . , xn} in [a, b] such that

a = x0 < x1 < · · · < xn = b.

If P and Q are both partitions of [a, b] and P ⊆ Q, then Q is called a refinement of P .
For example,

P =

{
0,

1
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,
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,
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, 1

}
is a partition of the interval [0, 1]. Similarly,

Q =

{
0,

1

8
,
1

4
,
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8
,
1
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,
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,
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, 1

}
is a partition of the interval [0, 1]. Since P ⊆ Q, Q is a refinement of P .

2 Darboux Sums

Suppose that f : [a, b] → R is bounded and let P = {x0, x1, . . . , xn} be a partition of [a, b]. Then, the upper
Darboux sum of f with respect to P is defined by

U(f, P ) =

n∑
i=1

Mi∆xi,

and the lower Darboux sum of f with respect to P is defined by

L(f, P ) =

n∑
i=1

mi∆xi,

where Mi = sup{f(x) : x ∈ [xi−1, xi]}, mi = inf{f(x) : x ∈ [xi−1, xi]}, and ∆xi = xi − xi−1. Note that,
since f is bounded, the existence of the infimum and supremum of f(x) over [xi−1, xi] is guaranteed by the
completeness axiom.

As an example, define f : [0, 1] → R by

f(x) =

{
1 if x ∈ Q,

0 if x /∈ Q.

Let P = {x0, x1, . . . , xn} be any partition of [0, 1]. Then, Mi = 1 andmi = 0 for all i ∈ {1, . . . , n}. Therefore,

L(f, P ) =

n∑
i=1

0 ·∆xi = 0
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and

U(f, P ) =

n∑
i=1

1 ·∆xi = 1.

As another example, define f : [0, 1] → R by f(x) = x. Let n ∈ N and let P = {0, 1/n, 2/n, . . . , 1} be a
partition of [0, 1]. Then, Mi = i/n and mi = (i− 1)/n for all i ∈ {1, . . . , n}. Therefore,

L(f, P ) =

n∑
i=1

i− 1

n
· 1
n
=

n2 − n

2n2

and

U(f, P ) =

n∑
i=1

i

n
· 1
n
=

n2 + n

2n2
.

As a final example, define f : [0, 1] → R by

f(x) =


x if 0 < x < 1,

1 if x = 0,

0 if x = 1.

Let n ∈ N and let P = {0, 1/n, 2/n, . . . , 1} be a partition of [0, 1]. Then, M1 = 1, Mn = 1, and Mi = i/n for
all i ∈ {2, . . . , n− 1}. Also, m1 = 0, mn = 0, and mi = (i− 1)/n for all i ∈ {2, . . . , n− 1}. Therefore,

L(f, P ) = 0 · 1
n
+

n−1∑
i=2

i− 1

n
· 1
n
+ 0 · 1

n
=

n2 − 3n+ 2

2n2

and

U(f, P ) = 1 · 1
n
+

n−1∑
i=2

i

n
· 1
1
+ 1 · 1

n
=

n2 + n− 2

2n2
+

1

n
.

The following theorem provides bounds on the upper and lower Darboux sums for partitions and their
refinements.

Theorem 2.1. Let f : [a, b] → R be bounded. Let P and Q are partitions of [a, b] such that Q is a refinement
of P . Then,

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Proof. Let x∗ be a point in [a, b] that is not in P . Then, there is a k ∈ {1, . . . , n} such that xk−1 < x∗ < xk.
Define

t1 = inf{f(x) : x ∈ [xk−1, x
∗]},

t2 = inf{f(x) : x ∈ [x∗, xk]},
s1 = sup{f(x) : x ∈ [xk−1, x

∗]},
s2 = sup{f(x) : x ∈ [x∗, xk]}.

Then, t1 ≥ mk, t2 ≥ mk, s1 ≤ Mk, and s2 ≤ Mk.
Now, let P ∗ = P ∪ {x∗}. Then, the terms in L(f, P ∗) and L(f, P ) are all the same except those over the

subinterval [xk−1, xk]. Thus, we have

L(f, P ∗)− L(f, P ) = t1(x
∗ − xk−1) + t2(xk − x∗)−mk(xk − xk−1)

= (t1 −mk)(x
∗ − xk−1) + (t2 −mk)(xk − x∗) ≥ 0.

Similarly, the terms in U(f, P ∗) and U(f, P ) are all the same except those over the subinterval [xk−1, xk].
Thus, we have

U(f, P ∗)− U(f, P ) = s1(x
∗ − xk−1) + s2(xk − x∗)−Mk(xk − xk−1)

= (s1 −Mk)(x
∗ − xk−1) + (s2 −Mk)(xk − x∗) ≤ 0.

2



Therefore, adding points to a partition can only increase the lower Darboux sum and can only decrease the
upper Darboux sum. By repeating this argument to every point in Q that is not in P , we conclude that

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

The following corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let f : [a, b] → R be bounded. Let P and Q be partitions of [a, b]. Then, L(f, P ) ≤ U(f,Q).

Proof. Since P ∪Q is a refinement of both P and Q, Theorem 2.1 implies that

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).
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