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1 The Derivative
Let S CR and let f: S — R. The derivative of f at an interior point ¢ € S is defined by

fI(C) = lim f(il?) B f(c)7
T—C Tr — C
provided the limit exists and is finite. In this case, we say that f is differentiable at c.
As an example, consider f: R — R defined by f(z) = . Then, for any ¢ € R we have
T—c

f'(c) = lim = lim(1) = 1.

T—c L —C T—c

As another example, consider f: R — R defined by f(x) = 22. Then, for any ¢ € R we have

22 _ 2

f'(c) = lim = lim(z + ¢) = 2c.

T—c T —C T—c

The sequential criterion for limits can be applied to the limit definition of the derivative. As a result, we
have the following theorem.

Theorem 1.1. Let S CR, f: S — R, and ¢ be an interior point of S. Then, f is differentiable at c if and
only if for every x: N — S\ {c} the sequence

f(mn) - f(C)
Ty —C
converges.

Theorem [I.1]is particularly useful for showing when a function is not differentiable. For example, consider
the function f: R — R defined by f(x) = |z|. Then, f is not differentiable at ¢ = 0. Indeed, let z,, = (j)
which converges to ¢ = 0 However, the sequence

flzn) — £(0) 1/n—0

Zn—0  (=)"/n—0 (=1"

does not converge. The previous example demonstrates that a function can be continuous at a point but not
differentiable at that point. On the other hand, the following result shows that differentiability at a point
implies continuity at that point.

Theorem 1.2. Let S C R, f: S — R, and c be an interior point of S. If f is differentiable at c, then f is
continuous at c

Proof. Suppose that f is differentiable at c¢. Since ¢ is an interior point of S it is an accumulation point
of S. Thus, we can show that f is continuous at ¢ by showing that lim,_,. f(z) = f(c). To that end, let
x: N = S\ {c} be a sequence that converges to c¢. Then, the sequence

f(zn) — f(c)

Ty —C



converges and we denote its limiting value by f’(c). Now,

n—oo n— 00

lim f(z,) = lim <(xn—c)w+f(c)>

2 Derivative Rules

The following theorem presents useful rules for taking the derivative of sums, products, and quotients.

Theorem 2.1. Let S C R, ¢ be an interior point of S, f: S = R, andg: S — R. If f and g are differentiable
at ¢, then the following properties hold.

(a) [+ g is differentiable at ¢ and (f 4+ g)'(c) = f'(c) + ¢'(c).
(b) f-g is differentiable at ¢ and (f - g)'(c) = f'(c) - g(e) + f(c) - ¢'(c)

(c) If g(c) # 0, then f/g is differentiable at ¢ and (f/g) (c) = ()9 —f(e)g'(e)

g(c)?

As a corollary of Theorem we will prove the constant multiple rule.

Corollary 2.2. Let S C R, ¢ be an interior point of S, f: S = R, and k € R. If f is differentiable at c,
then k- f is differentiable at ¢ and (k- f)'(c) =k - f'(c).

Proof. Note that a consant function has a derivative equal to zero everywhere. Hence, Theorem (b)
implies that k - f is differentiable at ¢ and

(k- f)'(e)=0-f(c)+k- f'(c)=k-f(c).

Also, as a corollary of Theorem [2.1} we will prove the power rule (for natural number powers).

Corollary 2.3. Let f: R — R be defined by f(z) = ", where n € N. Then f is differentiable at each ¢ € R
and f'(c) = nc" L.

Proof. When n = 1 the result holds since the derivative of f(xz) = z is equal to one everywhere. Let n € N
and suppose that for any ¢ € R, f(z) = 2" is differentiable at ¢ and f’(c) = nc"~ . By the product rule,
x - f(x) = 2" is differentiable at ¢ and

(@ f(@))(c) =1-flc)+c f'(c)=c"+nc" = (n+1)c".
Therefore, the result holds for all n € N by the principal of mathematical induction. O

The following theorem presents the chain rule.

Theorem 2.4. Let f: A — R and g: B — R such that f(A) C B. Suppose that ¢ is an interior point of
A and f(c) is an interior point of B. If f is differentiable at ¢ and g is differentiable at f(c), then go f is
differentiable at ¢ and

(go ) (e) =g (f(e)f (o).
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