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1 The Derivative

Let S ⊆ R and let f : S → R. The derivative of f at an interior point c ∈ S is defined by

f ′(c) = lim
x→c

f(x)− f(c)

x− c
,

provided the limit exists and is finite. In this case, we say that f is differentiable at c.
As an example, consider f : R → R defined by f(x) = x. Then, for any c ∈ R we have

f ′(c) = lim
x→c

x− c

x− c
= lim

x→c
(1) = 1.

As another example, consider f : R → R defined by f(x) = x2. Then, for any c ∈ R we have

f ′(c) = lim
x→c

x2 − c2

x− c
= lim

x→c
(x+ c) = 2c.

The sequential criterion for limits can be applied to the limit definition of the derivative. As a result, we
have the following theorem.

Theorem 1.1. Let S ⊆ R, f : S → R, and c be an interior point of S. Then, f is differentiable at c if and
only if for every x : N → S \ {c} the sequence

f(xn)− f(c)

xn − c

converges.

Theorem 1.1 is particularly useful for showing when a function is not differentiable. For example, consider

the function f : R → R defined by f(x) = |x|. Then, f is not differentiable at c = 0. Indeed, let xn = (−1)n

n
which converges to c = 0 However, the sequence

f(xn)− f(0)

xn − 0
=

1/n− 0

(−1)n/n− 0
= (−1)n

does not converge. The previous example demonstrates that a function can be continuous at a point but not
differentiable at that point. On the other hand, the following result shows that differentiability at a point
implies continuity at that point.

Theorem 1.2. Let S ⊆ R, f : S → R, and c be an interior point of S. If f is differentiable at c, then f is
continuous at c

Proof. Suppose that f is differentiable at c. Since c is an interior point of S it is an accumulation point
of S. Thus, we can show that f is continuous at c by showing that limx→c f(x) = f(c). To that end, let
x : N → S \ {c} be a sequence that converges to c. Then, the sequence

f(xn)− f(c)

xn − c
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converges and we denote its limiting value by f ′(c). Now,

lim
n→∞

f(xn) = lim
n→∞

(
(xn − c)

f(xn)− f(c)

xn − c
+ f(c)

)
= lim

n→∞
(xn − c) · lim

n→∞

f(xn)− f(c)

xn − c
+ f(c)

= 0 · f ′(c) + f(c) = f(c).

2 Derivative Rules

The following theorem presents useful rules for taking the derivative of sums, products, and quotients.

Theorem 2.1. Let S ⊆ R, c be an interior point of S, f : S → R, and g : S → R. If f and g are differentiable
at c, then the following properties hold.

(a) f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c).

(b) f · g is differentiable at c and (f · g)′(c) = f ′(c) · g(c) + f(c) · g′(c)

(c) If g(c) ̸= 0, then f/g is differentiable at c and (f/g)′(c) = f ′(c)·g(c)−f(c)·g′(c)
g(c)2

As a corollary of Theorem 2.1, we will prove the constant multiple rule.

Corollary 2.2. Let S ⊆ R, c be an interior point of S, f : S → R, and k ∈ R. If f is differentiable at c,
then k · f is differentiable at c and (k · f)′(c) = k · f ′(c).

Proof. Note that a consant function has a derivative equal to zero everywhere. Hence, Theorem 2.1 (b)
implies that k · f is differentiable at c and

(k · f)′(c) = 0 · f(c) + k · f ′(c) = k · f ′(c).

Also, as a corollary of Theorem 2.1, we will prove the power rule (for natural number powers).

Corollary 2.3. Let f : R → R be defined by f(x) = xn, where n ∈ N. Then f is differentiable at each c ∈ R
and f ′(c) = ncn−1.

Proof. When n = 1 the result holds since the derivative of f(x) = x is equal to one everywhere. Let n ∈ N
and suppose that for any c ∈ R, f(x) = xn is differentiable at c and f ′(c) = ncn−1. By the product rule,
x · f(x) = xn+1 is differentiable at c and

(x · f(x))′(c) = 1 · f(c) + c · f ′(c) = cn + ncn = (n+ 1)cn.

Therefore, the result holds for all n ∈ N by the principal of mathematical induction.

The following theorem presents the chain rule.

Theorem 2.4. Let f : A → R and g : B → R such that f(A) ⊆ B. Suppose that c is an interior point of
A and f(c) is an interior point of B. If f is differentiable at c and g is differentiable at f(c), then g ◦ f is
differentiable at c and

(g ◦ f)′(c) = g′(f(c))f ′(c).
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