Exam II Worksheet

Thomas R. Cameron

October 22, 2025

Exercises

- I. Classify each of the following sets as open, closed, neither, or both. Justify your answer.
 - (a) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
 - (b) N
 - (c) Q
 - (d) $\bigcap_{n=1}^{\infty} (0, 1/n)$
 - (e) $\{x \colon |x-5| \le \frac{1}{2}\}$
 - (f) $\{x \colon x^2 > 0\}$
- II. Find the closure of each set in I.
- III. Let $S \subseteq \mathbb{R}$ and let S' denote the accumulation points of S. Prove that S' is closed.
- IV. Show that each of the following sets is not compact by describing an open cover that has no finite subcover.
 - (a) [1,3)
 - (b) N
 - (c) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
- V. Let $S \subseteq \mathbb{R}$ be closed and bounded. Show that every open cover of S has a finite subcover; hint: see Theorem 1.2 from the class notes.
- VI. Prove the Bolzano-Weierstrass theorem: If $S \subseteq \mathbb{R}$ is infinite and bounded, then S has an accumulation point; hint: don't use results that depend on the Bolzano-Weierstrass theorem.
- VII. Find a sequence of real numbers satisfying each set of properties.
 - (a) Cauchy, but not monotone.
 - (b) Monotone, but not Cauchy.
 - (c) Bounded, bot not Cauchy.
- VIII. Let $f: [a, b] \to \mathbb{R}$ be continuous and suppose that f(a) < 0 < f(b). Prove that there exists a $c \in (a, b)$ such that f(c) = 0.
 - IX. Let $f:[a,b] \to \mathbb{R}$ be continuous. Prove that for each y between f(a) and f(b) there is a $c \in (a,b)$ such that f(c) = y.
 - X. Prove that $f:(a,b)\to\mathbb{R}$ is uniformly continuous if and only if f can be extended continuous to $\hat{f}:[a,b]\to\mathbb{R}$.