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1 Daily Quiz

Define a sequence that is

a. monotone but not Cauchy,

b. Cauchy but not monotone.

2 Key Topics

Today we discuss limits of functions. For further reading, see [1, Section 3.1]. Note that [1] refers to an
accumulation point as a cluster point.

Recall that c ∈ R is an accumulation point of S ⊆ R if

∀ϵ > 0, N∗(c; ϵ) ∩ S ̸= ∅.

The following proposition introduces an equivalent definition of an accumulation point of S.

Proposition 2.1. Let S ⊆ R. Then, c is an accumulation point of S if and only if there exists a convergent
sequence s : N → R such that rng (s) ⊆ S \ {c} and limn→∞ sn = c.

Proof. Suppose that c is an accumulation point of S. For each n ∈ N, pick sn ∈ N∗(c; 1/n) ∩ S. Let ϵ > 0
and define N = 1/ϵ so that

n > N ⇒ |c− sn| <
1

n
< ϵ.

Conversely, suppose that s : N → R is a sequence such that rng (s) ⊆ S \ {c} and limn→∞ sn = c. Let
ϵ > 0. Then, there is a N ∈ R such that

n > N ⇒ |sn − c| < ϵ ⇒ sn ∈ N∗(c; ϵ) ∩ S.

Therefore, c is an accumulation point of S.

2.1 Limits of Functions

Definition 2.2. Let f : S → R, L ∈ R, and c be an accumulation point of S. We say that f converges to L
as x approaches c if

∀ϵ > 0, ∃δ > 0 ∋ 0 < |x− c| < δ ⇒ |f(x)− L| < ϵ.

If f converges to L as x approaches c, we write

lim
x→c

f(x) = L.

Proposition 2.3. Let f : S → R and let c be an accumulation point of S. If f converges as x approaches c,
then the limiting value is unique.
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Proof. Suppose that L,L′ ∈ R satisfy

lim
x→c

f(x) = L and lim
x→c

f(x) = L′.

Let ϵ > 0. Then, there exists δ1, δ2 > 0 such that

0 < |x− c| < δ1 ⇒ |f(x)− L| < ϵ

2

and
0 < |x− c| < δ2 ⇒ |f(x)− L′| < ϵ

2
.

Let δ = min{δ1, δ2}. Then, 0 < |x− c| < δ implies that

|L− L′| = |L− f(x) + f(x)− L′|
≤ |f(x)− L|+ |f(x)− L′|

<
ϵ

2
+

ϵ

2
= ϵ.

Since the above inequality holds for any ϵ > 0, it follows that L = L′.

2.2 Sequential Limits

Theorem 2.4. Let f : S → R, L ∈ R, and c be an accumulation point of S. Then, limx→c f(x) = L if and
only if for every sequence s : N → R such that rng (s) ⊆ S \ {c} and limn→∞ sn = c we have

lim
n→∞

f(sn) = L

Proof. Suppose that limx→c f(x) = L and let s : N → R such that rng (s) ⊆ S \ {c} and limn→∞ sn = c. Let
ϵ > 0. Then, there is a δ > 0 such that

0 < |x− c| < δ ⇒ |f(x)− L| < ϵ.

Also, there is a N ∈ R such that
n > N ⇒ 0 < |sn − c| < δ.

Therefore, we have
n > N ⇒ 0 < |sn − c| < δ ⇒ |f(sn)− L| < ϵ,

which implies that limn→∞ f(sn) = L.
Conversely, suppose that limx→c f(x) ̸= L. Then, there exists a ϵ > 0 such that for all δ > 0 there exists

an x ∈ S such that 0 < |x− c| < δ and |f(x)− L| ≥ ϵ. In particular, for each n ∈ N there exists a sn ∈ S
such that 0 < |sn − c| < 1/n and |f(sn)− L| ≥ ϵ. Therefore, limn→∞ sn = c and limn→∞ f(sn) ̸= L.

Using Theorem 2.4, we can start applying everything we know about sequential limits to limits of func-
tions, e.g., see the Limit Theorems from October 2, 2023.

3 Exercises

I. Prove Proposition 2.1

II. Prove Theorem 2.4.

III. Use Theorem 2.4 to show that f(x) = sin(1/x) does not converge as x approaches 0.

IV. Use Theorem 2.4 to show that limx→0 x sin(1/x) does converge as x approaches 0.
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