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1 Daily Quiz

Let f : S → R, L ∈ R, and c be an accumulation point of S. State the definition of limx→c f(x) = L and its
negation limx→c f(x) ̸= L.

2 Key Topics

Today we finish our discussion of sequential limits. For further reading, see [1, Section 3.1]. Note that [1]
refers to an accumulation point as a cluster point.

We begin by completing the proof of the following theorem.

Theorem 2.1. Let f : S → R, L ∈ R, and c be an accumulation point of S. Then, limx→c f(x) = L if and
only if for every sequence s : N → R such that rng (s) ⊆ S \ {c} and limn→∞ sn = c we have

lim
n→∞

f(sn) = L

Proof. Suppose that limx→c f(x) = L and let s : N → R such that rng (s) ⊆ S \ {c} and limn→∞ sn = c. Let
ϵ > 0. Then, there is a δ > 0 such that

0 < |x− c| < δ ⇒ |f(x)− L| < ϵ.

Also, there is a N ∈ R such that
n > N ⇒ 0 < |sn − c| < δ.

Therefore, we have
n > N ⇒ 0 < |sn − c| < δ ⇒ |f(sn)− L| < ϵ,

which implies that limn→∞ f(sn) = L.
Conversely, suppose that limx→c f(x) ̸= L. Then, there exists a ϵ > 0 such that for all δ > 0 there exists

an x ∈ S such that 0 < |x− c| < δ and |f(x)− L| ≥ ϵ. In particular, for each n ∈ N there exists a sn ∈ S
such that 0 < |sn − c| < 1/n and |f(sn)− L| ≥ ϵ. Therefore, limn→∞ sn = c and limn→∞ f(sn) ̸= L.

Using Theorem 2.4, we can start applying everything we know about sequential limits to limits of func-
tions, e.g., see the Limit Theorems from October 2, 2023.

Theorem 2.2. Let f : S → R, g : S → R, and c be an accumulation point of S. If limx→c f(x) = L and
limx→c g(x) = L′, then the following hold

a. limx→c (f(x) + g(x)) = L+ L′,

b. limx→c (kf(x)) = kL, for all k ∈ R,

c. limx→c (f(x) · g(x)) = L · L′,

d. limx→c

(
f(x)
g(x)

)
= L

L′ , if L
′ ̸= 0.

Theorem 2.3. Let f : S → R, g : S → R, and c be an accumulation point of S. Suppose that limx→c f(x) = L
and limx→c g(x) = L′. If f(x) ≤ g(x) for all x ∈ S \ {c}, then L ≤ L′.
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2.1 Continuous Functions

Definition 2.4. Let f : S → R and let c ∈ S. Then, f is continuous at c if

∀ϵ > 0, ∃δ > 0 ∋ |x− c| < δ ⇒ |f(x)− f(c)| < ϵ

If f is continuous at each point c ∈ S, then we say that f is continuous on S. If f is continuous on its
domain S, then we say that f is continuous.

Proposition 2.5. Let f : S → R and let c ∈ S. If c is not an accumulation point of S, then f is continuous
at c.

Proof. Let ϵ > 0. Since c is an isolated point of S, there exists a δ > 0 such that N(c; δ)∩S = {c}. Therefore,

|x− c| < δ ⇒ x = c ⇒ |f(x)− f(c)| = 0 < ϵ.

Theorem 2.6. Let f : S → R and let c ∈ S. Suppose c is an accumulation point of S. Then, f is continuous
at c if and only if

lim
x→c

f(x) = f(c).

Proof. Suppose f is continuous at c and let ϵ > 0. Then, there exists a δ > 0 such that

|x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

Therefore,
0 < |x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

So, limx→c f(x) = f(c).
Suppose that limx→c f(x) = f(c) and let ϵ > 0. Then, there exists a δ > 0 such that

0 < |x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

If |x− c| = 0, then x = c so |f(x)− f(c)| = 0 < ϵ. Therefore,

|x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

So, f is continuous at c.

3 Exercises

I. Prove Proposition 2.1

II. Prove Theorem 2.4.

III. Use Theorem 2.4 to show that f(x) = sin(1/x) does not converge as x approaches 0.

IV. Use Theorem 2.4 to show that limx→0 x sin(1/x) does converge as x approaches 0.

References

[1] J. Lebl, Basic Analysis: Introduction to Real Analysis, Creative Commons Attribution-Noncommercial-
Share Alike, 6th ed., 2023.

2


	Daily Quiz
	Key Topics
	Continuous Functions

	Exercises

