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1 Daily Quiz

Let f : S → R and let c ∈ S. State the definition of f being continuous at c.

2 Key Topics

Today we finish our discussion of continuous functions. For further reading, see [1, Sections 3.2–3.3]. Note
that [1] refers to an accumulation point as a cluster point.

We begin with the following theorem.

Theorem 2.1. Let f : S → R and let c ∈ S. Suppose c is an accumulation point of S. Then, f is continuous
at c if and only if

lim
x→c

f(x) = f(c).

Proof. Suppose f is continuous at c and let ϵ > 0. Then, there exists a δ > 0 such that

|x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

Therefore,
0 < |x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

So, limx→c f(x) = f(c).
Suppose that limx→c f(x) = f(c) and let ϵ > 0. Then, there exists a δ > 0 such that

0 < |x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

If |x− c| = 0, then x = c so |f(x)− f(c)| = 0 < ϵ. Therefore,

|x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

So, f is continuous at c.

We give an equivalent definition of continuity in terms of sequential limits in the following theorem.

Theorem 2.2. Let f : S → R and let c ∈ S. Then, f is continuous at c if and only if for all s : N → R such
that limn→∞ sn = c, we have

lim
n→∞

f(sn) = f(c).

2.1 Properties of Continuous Functions

Proposition 2.3. Let f : B → R and g : A → B. If g is continuous at c ∈ A and f is continuous at g(c).
Then, f ◦ g : A → R is continuous at c.
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Proof. Suppose that x : N → A satisfies limn→∞ xn = c. Then, by continuity of g at c, g(s) : N → B satisfies
limn→∞ g(sn) = g(c). Finally, by continuity of f at g(c), f(g(s)) : N → R satisfies

lim
n→∞

f(g(sn)) = f(g(c)).

Therefore, f ◦ g is continuous at c.

Lemma 2.4. Let S ⊆ R be compact (closed and bounded). Then, any continuous function f : S → R is
bounded.

Proof. Suppose f : S → R is not bounded. Then, for each n ∈ N, there is a sn ∈ S such that

|f(sn)| ≥ n.

The range rng (s) ⊆ S is bounded. Hence, the Bolzano-Weirstrass theorem implies that rng (s) has an
accumulation point, a ∈ S. Note that, since S is compact (closed and bounded), we know that S contains
all of its accumulation points.

Since a is an accumulation point of rng (s), it follows that there exists a subsequence snk
such that

limk→∞ snk
= a. However, |f(snk

)| ≥ nk ≥ k, so limk→∞ f(snk
) does not exist. Therefore, f is not

continuous at a ∈ S.

Theorem 2.5. Let S ⊆ R be compact (closed and bounded) and let f : S → R be continuous. Then, f(S) ⊆ R
is compact.

Proof. Note that Lemma 2.4 implies that f(S) is bounded. If f(S)′ is empty, then we are done since f(S)
is bounded and closed since it contains all of its accumulation points. Suppose f(S)′ is non-empty and let
b ∈ f(S)′. Then, for each n ∈ N, there exists a yn ∈ N∗(b; 1/n) ∩ F (S) and a xn ∈ S such that f(xn) = yn.
Note that the yn can be selected to be distinct; hence, rng (y) and rng (x) are infinite sets. Since rng (x) ⊆ S is
bounded, the Bolzano-Weirstrass theorem implies that rng (x) has an accumulation point, a ∈ S. Therefore,
there exists a subsequence xnk

such that
lim
k→∞

xnk
= a.

Since f is continuous, we have
f(a) = lim

k→∞
f(xnk

) = lim
k→∞

ynk
= b.

Since f(a) = b, it follows that b ∈ f(S).

Corollary 2.6. Let S ⊆ R be compact (closed and bounded) and let f : S → R be continuous. Then, f
achieves both its maximum and minimum values on S.

Proof. Since f(S) ⊆ R is bounded, the completeness axiom implies that f(S) has an infimum and supremum.
Furthermore, since f(S) is closed, both the infimum and supremum are elements of f(S). Hence, there exists
s1, s2 ∈ S such that

f(s1) = inf f(S) and f(s2) = sup f(S).

3 Exercises

I. Prove Theorem 2.2.

II. Prove Lemma 2.4.

III. Prove Theorem 2.5.

IV. Prove Corollary 2.6.
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