Real Analysis

Thomas R. Cameron

October 18, 2023

1 Daily Quiz

Let $f: S \to \mathbb{R}$ and let $c \in S$. State the definition of f being continuous at c.

2 Key Topics

Today we finish proving that the image of a compact set under a continuous function is compact. Then, we introduce the concept of uniform continuity. For further reading, see [\[1,](#page-1-0) Sections 3.3–3.4]. Note that [\[1\]](#page-1-0) refers to an accumulation point as a cluster point.

2.1 Properties of Continuous Functions

On October 16, 2023, we proved the following lemma.

Lemma 2.1. Let $S \subseteq \mathbb{R}$ be compact (closed and bounded). Then, any continuous function $f: S \to \mathbb{R}$ is bounded.

Today, we use this lemma to prove our main result.

Theorem 2.2. Let $S \subseteq \mathbb{R}$ be compact (closed and bounded) and let $f: S \to \mathbb{R}$ be continuous. Then, $f(S) \subseteq \mathbb{R}$ is compact.

Proof. Note that Lemma 2.1 implies that $f(S)$ is bounded. If $f(S)'$ is empty, then we are done since $f(S)$ is bounded and closed since it contains all of its accumulation points. Suppose $f(S)'$ is non-empty and let $b \in f(S)'$. Then, for each $n \in \mathbb{N}$, there exists a $y_n \in N^*(b;1/n) \cap F(S)$ and a $x_n \in S$ such that $f(x_n) = y_n$. Note that the y_n can be selected to be distinct; hence, rng (y) and rng (x) are infinite sets. Since rng $(x) \subseteq S$ is bounded, the Bolzano-Weirstrass theorem implies that rng (x) has an accumulation point, $a \in S$. Therefore, there exists a subsequence x_{n_k} such that

$$
\lim_{k \to \infty} x_{n_k} = a.
$$

Since f is continuous, we have

$$
f(a) = \lim_{k \to \infty} f(x_{n_k}) = \lim_{k \to \infty} y_{n_k} = b.
$$

Since $f(a) = b$, it follows that $b \in f(S)$.

Therefore, $f(S)$ contains all of its accumulation points, so $f(S)$ is compact (closed and bounded). \Box

As a consequence of our main result, it follows that continuous functions over bounded domains attain their maximum and minimum values.

Corollary 2.3. Let $S \subseteq \mathbb{R}$ be compact (closed and bounded) and let $f: S \to \mathbb{R}$ be continuous. Then, f achieves both its maximum and minimum values on S.

Proof. Since $f(S) \subseteq \mathbb{R}$ is bounded, the completeness axiom implies that $f(S)$ has an infimum and supremum. Furthermore, since $f(S)$ is closed, both the infimum and supremum are elements of $f(S)$. Hence, there exists $s_1, s_2 \in S$ such that

$$
f(s_1) = \inf f(S)
$$
 and $f(s_2) = \sup f(S)$.

 \Box

2.2 Uniform Continuity

Definition 2.4. Let $S \subseteq \mathbb{R}$ and let $f: S \to \mathbb{R}$. We say that f is uniformly continuous on S if

$$
\forall \epsilon > 0, \ \exists \delta > 0 \ \ni \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon.
$$

Example 2.5. We will show that $f(x) = 2x$ is uniformly continuous on R. Let $\epsilon > 0$ and define $\delta = \epsilon/2$. Then,

$$
|x - y| < \delta \Rightarrow |x - y| < \frac{\epsilon}{2}
$$
\n
$$
\Rightarrow |f(x) - f(y)| = 2|x - y| < \epsilon.
$$

Example 2.6. We will show that $f(x) = x^2$ is not uniformly continuous on R. Let $\epsilon = 1$ and $\delta > 0$. Then, define $x = 1/\delta$ and $y = 1/\delta + \delta/2$, which gives us

$$
|x - y| = \frac{\delta}{2} < \delta
$$

and

$$
|f(x) - f(y)| = |x + y| |x - y|
$$

$$
= \left| \frac{2}{\delta} + \frac{\delta}{2} \right| |\delta| 2
$$

$$
> \frac{2}{\delta} \frac{\delta}{2} = 1 = \epsilon.
$$

The issue in the previous example was that $|x + y|$ could be made arbitrarily large, this could not happen over a bounded interval.

Example 2.7. We will show that $f(x) = 1/x$ is not uniformly continuous on $(0, 2)$. Let $\epsilon = 1$ and $\delta > 0$. Define $x_n = \frac{1}{n}$ for $n \in \mathbb{N}$. Then, $\lim_{n \to \infty} x_n = 0$. Hence, x is Cauchy since it is convergent. Therefore, there is a N such that $n, m > N$ implies that

$$
|x_n - x_m| < \delta.
$$

Fix $m > N$ and let $n = m + 2$. Then, $|x_n - x_m| < \delta$ but

$$
|f(x_n) - f(x_m)| = 2 > \epsilon.
$$

The issue in the previous example was that $f(x)$ is unbounded as $x \to 0$. Since continuity over a compact interval implies that the range is bounded, this would not happen if the domain of f were compact.

3 Exercises

I. Prove Theorem 2.2.

References

[1] J. Lebl, Basic Analysis: Introduction to Real Analysis, Creative Commons Attribution-Noncommercial-Share Alike, 6th ed., 2023.