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1 Daily Quiz

Show that sn = 1− 1
n converges to 1.

2 Key Topics

Having established the limit of a sequence:

lim
n→∞

sn = L,

if ∀ϵ > 0, ∃N ∈ R ∋ n > N ⇒ |sn − L| < ϵ, we now establish basic arithmetic properties of the limit.
For further reading, see [1, Section 2.2].

Today, we will prove the following theorem.

Theorem 2.1. Let s : N → R and t : N → R be convergent with limits L and L′, respectively. Then, the
following hold

a. limn→∞ (sn + tn) = L+ L′,

b. limn→∞ (ksn) = kL, for any k ∈ R,

c. limn→∞ (sn · tn) = L · L′,

d. limn→∞

(
sn
tn

)
= L

L′ , if L
′ ̸= 0.

Proof.

a. Let ϵ > 0. Then, there exists N1, N2 ∈ R such that

n > N1 ⇒ |sn − L| < ϵ

2

n > N2 ⇒ |tn − L′| < ϵ

2
.

Then, let N = max{N1, N2} so that

n > N ⇒ |(sn + tn)− (L+ L′)| = |(sn − L) + (tn − L′)|
≤ |sn − L|+ |tn − L′|

<
ϵ

2
+

ϵ

2
= ϵ.

b. Let ϵ > 0. Then, there exists N ∈ R such that

n > N ⇒ |sn − L| < ϵ

|k|+ 1
.
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Then, we have

n > N ⇒ |ksn − kL| = |k| |sn − L|
< (|k|+ 1) |sn − L|

< (|k|+ 1)
ϵ

|k|+ 1
= ϵ.

c. Let ϵ > 0. Then, there exists N1, N2 ∈ R such that

n > N1 ⇒ |sn − L| < ϵ

2(M + 1)

n > N2 ⇒ |tn − L′| < ϵ

2(|L|+ 1)
,

where M is an upper bound on |tn|, which is guaranteed to exist since t is a convergent sequence.

Then, let N = max{N1, N2} so that

n > N ⇒ |sntn − LL′| = |sntn − tnL+ tnL− LL′|
≤ |tn| |sn − L|+ |L| |tn − L′|
≤ (M + 1) |sn − L|+ (|L|+ 1) |tn − L′|

< (M + 1)
ϵ

2(M + 1)
+ (|L|+ 1)

ϵ

2(|L|+ 1)
= ϵ.

d. Let ϵ > 0. Then, there exists N1, N2 ∈ R such that

n > N1 ⇒ |sn − L| < |L′| ϵ
4

n > N2 ⇒ |tn − L′| < |L′|2 ϵ
4(|L|+ 1)

Note that, since t converges to L′, it follows that there is a N3 ∈ R such that

n > N3 ⇒ |tn| ≥
|L′|
2

.

Then, let N = max{N1, N2, N3} so that

n > N ⇒
∣∣∣∣sntn − L

L′

∣∣∣∣ = ∣∣∣∣L′sn − Ltn
L′tn

∣∣∣∣
=

1

|L′tn|
|L′sn − Ltn|

≤ 2

|L′|2
|L′sn − Ltn|

=
2

|L′|2
|L′sn − LL′ + LL′ − Ltn|

≤ 2

|L′|2
(|L′| |sn − L|+ |L| |tn − L′|)

≤ 2

|L′|
|sn − L|+ 2

(|L|+ 1)

|L′|2
|tn − L′|

<
2

|L′|
|L′| ϵ
4

+ 2
(|L|+ 1)

|L′|2
|L′|2 ϵ

4(|L|+ 1)
= ϵ.
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In addition, we will prove the following results.

Theorem 2.2. Let s : N → R and t : N → R be convergent with limits L and L′, respectively. If sn ≤ tn for
all n ∈ N, then L ≤ L′.

Proof. For the sake of contradiction, suppose that L > L′. Define ϵ = L−L′

2 > 0. Then, there exists
N1, N2 ∈ R such that

n > N1 ⇒ L− ϵ < sn < L+ ϵ

n > N2 ⇒ L′ − ϵ < tn < L′ + ϵ.

Then, let N = max{N1, N2} so that

n > N ⇒ tn < L′ + ϵ =
L+ L′

2
= L− ϵ < sn,

which contradicts sn ≤ tn for all n ∈ N.

Theorem 2.3. Let s : N → R with sn > 0 for all n ∈ N. If

lim
n→∞

sn+1

sn
= L < 1,

then limn→∞ sn = 0.

Proof. There exists a c ∈ R such that L < c < 1. Define ϵ = (c− L) > 0. Then, there is a N ∈ R such that

n > N ⇒ sn+1

sn
< ϵ+ L = c.

Therefore, for n > N , we have

0 < sn+1 < csn < c2sn−1 < · · · < cn−N+1sN .

Define M = sN
cN

. Then, for all n > N , we have

sn+1 < Mcn+1.

Since limn→∞ cn+1 = 0, it follows that limn→∞ sn+1 = 0.

3 Exercises

I. Prove Theorem 2.1

II. Prove Theorem 2.2

III. Prove Theorem 2.3

References

[1] J. Lebl, Basic Analysis: Introduction to Real Analysis, Creative Commons Attribution-Noncommercial-
Share Alike, 6th ed., 2023.

3


	Daily Quiz
	Key Topics
	Exercises

