Real Analysis

Thomas R. Cameron

October 23, 2023

1 Daily Quiz

Let $f: S \to \mathbb{R}$. State the definition of f being uniformly continuous on S.

2 Key Topics

Today we introduce the definition of the derivative. For further reading, see [1, Section 4.1].

2.1 The Derivative

Definition 2.1. Let *I* be an interval and let $f: I \to \mathbb{R}$. Then, *f* is *differentiable* at $c \in I$ if there exists an $L \in \mathbb{R}$ such that

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = L$$

In this case, we say that L is the derivative of f at c and we write f'(c) = L. If f is differentiable at all $c \in I$, then we say that f is differentiable on I and we defined the derivative function $f': I \to \mathbb{R}$ such that

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c},$$

for all $c \in I$.

Example 2.2. We will show that $f(x) = x^2$ is differentiable on \mathbb{R} . To this end, let $c \in \mathbb{R}$ and consider the limit

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x^2 - c^2}{x - c}$$
$$= \lim_{x \to c} \frac{(x + c)(x - c)}{x - c}$$
$$= \lim_{x \to c} (x + c) = 2c.$$

Therefore, the derivative of $f(x) = x^2$ is give by f'(x) = 2x.

2.2 Sequential Limit

Using the sequential criterion for limits, see Theorem 2.4 from October 11 2023, we can arrive at the following theorem.

Theorem 2.3. Let I be an interval and let $f: I \to \mathbb{R}$. Then, f is differentiable at $c \in I$ if and only if there exists an $L \in \mathbb{R}$ such that for every sequence $s: \mathbb{N} \to I$, where $\operatorname{rng}(s) \subseteq I \setminus \{c\}$ and $\lim_{n\to\infty} s_n = c$, we have

$$\lim_{n \to \infty} \frac{f(s_n) - f(c)}{s_n - c} = L.$$

Example 2.4. We will show that f(x) = |x| is not differentiable at c = 0. To this end, let $s \colon \mathbb{N} \to \mathbb{R}$ be defined by

$$s_n = \frac{(-1)^n}{n}.$$

Clearly, $\lim_{n\to\infty} s_n = 0$. However,

$$\lim_{n \to \infty} \frac{f(s_n) - f(0)}{s_n - 0} = \lim_{n \to \infty} \frac{|s_n|}{s_n}$$
$$= \lim_{n \to \infty} (-1)^n,$$

which does not converge.

Finally, we will show that differentiability implies continuity.

Theorem 2.5. Let I be an interval and let $f: I \to \mathbb{R}$. If f is differentiable at $c \in I$, then f is continuous at c.

Proof. Suppose that f is differentiable at $c \in I$. Since I is an interval, every $c \in I$ is an accumulation point. Hence, we can show that f is continuous at c by showing that $\lim_{x\to c} f(x) = f(c)$.

To this end, let $s: \mathbb{N} \to I$, where $\operatorname{rng}(s) \subseteq I \setminus \{c\}$ and $\lim_{n \to \infty} s_n = c$. Then, there exists an $L \in \mathbb{R}$ such that

$$\lim_{n \to \infty} \frac{f(s_n) - f(c)}{s_n - c} = L.$$

Therefore, we have

$$\lim_{n \to \infty} f(s_n) = \lim_{n \to \infty} \left((s_n - c) \frac{f(s_n) - f(c)}{s_n - c} + f(c) \right)$$
$$= \lim_{n \to \infty} (s_n - c) \cdot \lim_{n \to \infty} \frac{f(s_n) - f(c)}{s_n - c} + f(c)$$
$$= 0 \cdot L + f(c) = f(c).$$

с		
L		

3 Exercises

I. Prove Theorem 2.5.

References

[1] J. LEBL, *Basic Analysis: Introduction to Real Analysis*, Creative Commons Attribution-Noncommercial-Share Alike, 6th ed., 2023.