Real Analysis

Thomas R. Cameron

October 27, 2023

1 Daily Quiz

2 Key Topics

Today we prove the mean value theorem. For further reading, see [1, Section 4.2]. We begin with a definition of relative extrema.

Definition 2.1. Let $S \subseteq \mathbb{R}$ and $f: S \to \mathbb{R}$. Then, $c \in S$ is a *relative max* if there exists an $\delta > 0$ such that

 $\forall x \in N(c; \delta), \ f(x) \le f(c).$

Similarly, $c \in S$ is a *relative min* if there exists an $\delta > 0$ such that

$$\forall x \in N(c; \delta), \ f(x) \ge f(c).$$

If c is either a relative max or a relative min, then we say that c is a *relative extrema* of f.

3 Exercises

I. Prove the following Lemma.

Lemma 3.1. Suppose that $f: (a,b) \to \mathbb{R}$ is differentiable on (a,b). If $c \in (a,b)$ is a relative extrema of f, then f'(c) = 0.

Hint: Apply the following steps:

- Assume that c is a relative max, note that if c is a relative min of f then c is a relative max of -f.
- Fix $\delta > 0$ such that $\forall x \in N(c; \delta), f(x) \le f(c)$.
- Let $x: \mathbb{N} \to (c \delta, c)$ such that $\lim_{n \to \infty} y_n = c$. Explain why

$$\frac{f(x_n) - f(c)}{x_n - c} \ge 0.$$

• Let $y: \mathbb{N} \to (c, c+\delta)$ such that $\lim_{n\to\infty} y_n = c$. Explain why

$$\frac{f(y_n) - f(c)}{y_n - c} \le 0.$$

- Explain why the previous two steps imply that f'(c) = 0.
- II. Prove Rolle's theorem.

Theorem 3.2. Suppose that $f: [a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). If f(a) = f(b), then there is a $c \in (a,b)$ such that f'(c) = 0.

Hint: Apply the following steps:

- Use Corollary 2.6 to explain why there exists an $x_1, x_2 \in [a, b]$ such that $f(x_1) \leq f(x) \leq f(x_2)$ for all $x \in [a, b]$.
- Break the rest of the argument into two cases: Case 1 is where x_1 and x_2 are both end points, Case 2 is where either $x_1 \in (a, b)$ or $x_2 \in (a, b)$.
- In Case 1, explain why f is a constant function and therefore f'(c) = 0 for all $c \in (a, b)$.
- In Case 2, explain why either x_1 or x_2 is a relative extrema and use Lemma 3.1 to conclude that $f'(x_1) = 0$ or $f'(x_2) = 0$.
- III. Prove the Mean Value Theorem.

Theorem 3.3. Suppose that $f: [a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Then, there exists $a \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Hint: Apply the following steps:

• Define

$$g(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a), \ \forall x \in [a, b].$$

- Explain why you can apply Rolle's theorem to h(x) = f(x) g(x).
- Conclude that there is a $c \in (a, b)$ such that h'(c) = f'(c) g'(c) = 0.

References

 J. LEBL, Basic Analysis: Introduction to Real Analysis, Creative Commons Attribution-Noncommercial-Share Alike, 6th ed., 2023.