Real Analysis

Thomas R. Cameron

October 30, 2023

1 Daily Quiz

State the Mean Value Theorem

2 Key Topics

Today we review our proof of the Mean Value Theorem from Homework 5.2. In addition, we use the Mean Value Theorem to prove the so-called "first derivative test". For further reading, see [\[1,](#page-1-0) Section 4.2].

2.1 Mean Value Theorem

Lemma 2.1. Suppose that $f : (a, b) \to \mathbb{R}$ is differentiable on (a, b) . If $c \in (a, b)$ is a relative extrema of f, then $f'(c) = 0$.

Proof. Without loss of generality, suppose c is a relative max. Then, there exists a $\delta > 0$ such that for all $x \in N(c; \delta), f(x) \leq f(c)$. Let $x: \mathbb{N} \to (c - \delta, c)$ such that $\lim_{n \to \infty} x_n = c$. Then,

$$
\frac{f(x_n) - f(c)}{x_n - c} \ge 0,
$$

for all $n \in \mathbb{N}$. Therefore, $\lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} \ge 0$. Also, let $y: \mathbb{N} \to (c, c + \delta)$ such that $\lim_{n \to \infty} y_n = c$. Then,

$$
\frac{f(y_n) - f(c)}{y_n - c} \le 0,
$$

for all $n \in \mathbb{N}$. Therefore, $\lim_{n \to \infty} \frac{f(y_n) - f(c)}{y_n - c} \leq 0$.

Since f is differentiable at c, it follows that $f'(c) = 0$.

Theorem 2.2 (Rolle's). Suppose that $f : [a, b] \to \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) . If $f(a) = f(b)$, then there is $a c \in (a, b)$ such that $f'(c) = 0$.

Proof. Since f is continuous and [a, b] is compact, it follows that $f([a, b])$ is compact and therefore contains its infimum and supremum values. Therefore, there exists an $x_1, x_2 \in [a, b]$ such that $f(x_1) \le f(x) \le f(x_2)$ for all $x \in [a, b]$.

If x_1 and x_2 are both endpoints, then $f(x) =$ is constant on [a, b] so $f'(c) = 0$ for all $c \in (a, b)$.

If either x_1 or x_2 are not endpoints, then they are relative extrema and it follows that $f'(x_1) = 0$ or $f'(x_2) = 0.$ \Box

Theorem 2.3. Suppose that $f : [a, b] \to \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) . Then, there exists $a \ c \in (a, b)$ such that

$$
f'(c) = \frac{f(b) - f(a)}{b - a}.
$$

 \Box

Proof. Define

$$
g(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a),
$$

for all $x \in [a, b]$. Then, g is continuous on $[a, b]$ and differentiable on (a, b) . Furthermore, $h(x) = f(x) - g(x)$ is continuous on [a, b] and differentiable on (a, b) , and $h(a) = 0$ and $h(b) = 0$. Thus, Rolle's theorem applied to $h(x)$ gives us a $c \in (a, b)$ such that $h'(c) = 0$. Note that $h'(c) = f'(c) - g'(c)$. Therefore, we have

$$
f'(c) = g'(c) = \frac{f(b) - f(a)}{b - a}.
$$

.

 \Box

2.2 First Derivative Test

Proposition 2.4.

Let I be an open interval and let $f: I \to \mathbb{R}$ be differentiable. Then,

- I. If $f'(x) \geq 0$ for all $x \in I$, then f is monotone increasing.
- II. If $f'(x) \leq 0$ for all $x \in I$, then f is monotone decreasing.
- *Proof.* I. Suppose that $f'(x) \ge 0$ for all $x \in I$ and let $x_1 < x_2$ be elements of I. Then, the MVT applied to $f: [x_1, x_2] \to \mathbb{R}$ gives us a $c \in (x_1, x_2)$ such that

$$
f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}
$$

Therefore, $f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \ge 0$, so $f(x_2) \ge f(x_1)$.

II. Similar to part I.

Proposition 2.5. Let $f : [a, b] \to \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) . Also, let $c \in (a, b)$.

- I. If there is a $\delta > 0$ such that $f'(x) \leq 0$ for all $x \in (c \delta, c)$ and $f'(x) \geq 0$ for all $x \in (c, c + \delta)$, then c is a relative min.
- II. If there is a $\delta > 0$ such that $f'(x) \geq 0$ for all $x \in (c \delta, c)$ and $f'(x) \leq 0$ for all $x \in (c, c + \delta)$, then c is a relative max.

3 Exercises

References

[1] J. LEBL, Basic Analysis: Introduction to Real Analysis, Creative Commons Attribution-Noncommercial-Share Alike, 6th ed., 2023.

 \Box