Real Analysis

Thomas R. Cameron

October 4, 2023

1 Daily Quiz

Use the algebraic properties of the limit to find

$$\lim_{n \to \infty} \left(\frac{3n^2 - 5n}{4n^2 + 3n + 2} \right)$$

2 Key Topics

Having established the definition of a convergent sequence, we now investigate monotone and Cauchy sequences For further reading, see [1, Sections 2.1.1 and 2.4].

We begin by completing the following results.

Theorem 2.1. Let $s: \mathbb{N} \to \mathbb{R}$ and $t: \mathbb{N} \to \mathbb{R}$ be convergent with limits L and L', respectively. If $s_n \leq t_n$ for all $n \in \mathbb{N}$, then $L \leq L'$.

Proof. For the sake of contradiction, suppose that L > L'. Define $\epsilon = \frac{L-L'}{2} > 0$. Then, there exists $N_1, N_2 \in \mathbb{R}$ such that

$$n > N_1 \Rightarrow L - \epsilon < s_n < L + \epsilon$$
$$n > N_2 \Rightarrow L' - \epsilon < t_n < L' + \epsilon$$

Then, let $N = \max\{N_1, N_2\}$ so that

$$n > N \Rightarrow t_n < L' + \epsilon = \frac{L + L'}{2} = L - \epsilon < s_n,$$

which contradicts $s_n \leq t_n$ for all $n \in \mathbb{N}$.

Theorem 2.2. Let $s \colon \mathbb{N} \to \mathbb{R}$ with $s_n > 0$ for all $n \in \mathbb{N}$. If

$$\lim_{n \to \infty} \frac{s_{n+1}}{s_n} = L < 1,$$

then $\lim_{n\to\infty} s_n = 0$.

Proof. There exists a $c \in \mathbb{R}$ such that L < c < 1. Define $\epsilon = (c - L) > 0$. Then, there is a $N \in \mathbb{R}$ such that

$$n > N \Rightarrow \frac{s_{n+1}}{s_n} < \epsilon + L = c$$

Therefore, for n > N, we have

$$0 < s_{n+1} < cs_n < c^2 s_{n-1} < \dots < c^{n-N+1} s_N.$$

Define $M = \frac{s_N}{c^N}$. Then, for all n > N, we have

$$s_{n+1} < Mc^{n+1}.$$

Since $\lim_{n\to\infty} c^{n+1} = 0$, it follows that $\lim_{n\to\infty} s_{n+1} = 0$.

2.1 Monotone Sequences

Definition 2.3. A sequence $s: \mathbb{N} \to \mathbb{R}$ is *increasing* if $s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$. Similarly, s is *decreasing* if $s_n \geq s_{n+1}$ for all $n \in \mathbb{N}$. A sequence is *monotone* if it is increasing or decreasing.

Theorem 2.4. A monotone sequence converges if and only if it is bounded.

2.2 Cauchy Sequences

Definition 2.5. A sequence $s: \mathbb{N} \to \mathbb{R}$ is a *Cauchy sequence* if

 $\forall \epsilon > 0, \ \exists N \in \mathbb{R} \ \ni \ m, n > N \ \Rightarrow \ |s_n - s_m| < \epsilon.$

Lemma 2.6. Every Cauchy sequence is bounded.

Theorem 2.7. A sequence $s: \mathbb{N} \to \mathbb{R}$ is convergent if and only if it is a Cauchy sequence.

3 Exercises

- I. Prove Theorem 2.1
- II. Prove Theorem 2.2
- III. Prove Theorem 2.4

References

 J. LEBL, Basic Analysis: Introduction to Real Analysis, Creative Commons Attribution-Noncommercial-Share Alike, 6th ed., 2023.