Real Analysis

Thomas R. Cameron

October 6, 2023

1 Daily Quiz

Show that the following sequence is not Cauchy:

 $s_n = 3n$.

2 Key Topics

Today we prove that every real Cauchy sequence is convergent in R. For further reading, see [?, 2.4]. We begin with the following lemma which establishes that Cauchy sequences are bounded.

Lemma 2.1. Every Cauchy sequence is bounded.

Proof. Let $s: \mathbb{N} \to \mathbb{R}$ be Cauchy and define $\epsilon = 1$. Then, there exists an $N \in \mathbb{R}$ such that $n, m > N \Rightarrow$ $|s_n - s_m| < 1$. Fix m as the smallest integer bigger than N. Then, we have

 $n > N \Rightarrow |s_n - s_m| < 1 \Rightarrow |s_n| < 1 + |s_m|$.

Then, the following serves as an upper bound for s :

$$
M = \max\{|s_1|, \ldots, |s_m|, 1 + |s_m|\}.
$$

 \Box

Next, we prove our main result.

Theorem 2.2. A real sequence is convergent if and only if it is Cauchy.

Proof. On October 4, we proved that every convergent sequence is Cauchy. Let $s: \mathbb{N} \to \mathbb{R}$ be Cauchy and define its range to be

$$
R = \{ s_n \colon \ n \in \mathbb{N} \}.
$$

We break the remainder of this proof into two cases: R is finite and R is infinite.

If R is finite, then there exists an $\epsilon > 0$ such that $N(x; \epsilon) \cap R = \{x\}$ for all $x \in R$. Since s is Cauchy, there exists an N such that $n, m > N \Rightarrow |s_n - s_m| < \epsilon$. Fix m as the smallest integer bigger than N. Then, we have

$$
n > N \Rightarrow |s_n - s_m| < \epsilon \Rightarrow s_n = s_m.
$$

Therefore, $\lim_{n\to\infty} s_n = s_m$.

If R is infinite, then Lemma [2.1](#page-0-0) and the Bolzano-Weirstrass Theorem (see Review 1) implies that R has an accumulation point, which we denote by $a \in \mathbb{R}$. Let $\epsilon > 0$. Then, there is an $N \in \mathbb{R}$ such that

$$
n, m > N \Rightarrow |s_n - s_m| < \frac{\epsilon}{2}.
$$

Since a is an accumulation point, $N(a; \epsilon/2)$ contains infinitely many points of R. Hence, there is an $m > N$ such that $s_m \in N(a; \epsilon/2)$. Then, for all $n > N$, we have

$$
|s_n - a| = |s_n - s_m + s_m - a|
$$

\n
$$
\leq |s_n - s_m| + |s_m - a|
$$

\n
$$
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

3 Group Work

In class, we proved Theorem [2.2](#page-0-1) in 3 groups.

3.1 Group 1

Prove that if R is finite, then s converges to an element of the sequence. Hint: There is an $\epsilon > 0$ such that $N(x; \epsilon) \cap R = \{x\}$ for all $x \in R$.

3.2 Group 2

Prove that if R is infinite, then there is an accumulation point of R in $\mathbb R$. Hint: Reference review 1.

3.3 Group 3

Prove that if R is infinite, then $\lim_{n\to\infty} s_n = a$, where $a \in \mathbb{R}$ is an accumulation point of R.

Hint: You can assume that R has an accumulation point. Since a is an accumulation point, every neighborhood of a contains infinitely many points of R . Finally, note that

$$
|s_n - a| \le |s_n - s_m| + |s_m - a|.
$$

4 Exercises

I. Prove Lemma [2.1](#page-0-0)

II. Prove Theorem [2.2](#page-0-1)

 \Box