Real Analysis

Thomas R. Cameron

October 9, 2023

1 Daily Quiz

Define a sequence that is

a. monotone but not Cauchy,

b. Cauchy but not monotone.

2 Key Topics

Today we complete our proof of the fact that all Cauchy sequences are convergent in \mathbb{R} . Then, we introduce subsequences. For further reading, see [1, Sections 2.1.3 and 2.4].

Theorem 2.1. A real sequence is convergent if and only if it is Cauchy.

Proof. On October 4, we proved that every convergent sequence is Cauchy. Let $s: \mathbb{N} \to \mathbb{R}$ be Cauchy and define its range to be

$$R = \{s_n \colon n \in \mathbb{N}\}.$$

We break the remainder of this proof into two cases: R is finite and R is infinite.

If R is finite, then there exists an $\epsilon > 0$ such that $N(x;\epsilon) \cap R = \{x\}$ for all $x \in R$. Since s is Cauchy, there exists an N such that $n, m > N \Rightarrow |s_n - s_m| < \epsilon$. Fix m as the smallest integer bigger than N. Then, we have

$$n > N \Rightarrow |s_n - s_m| < \epsilon \Rightarrow s_n = s_m.$$

Therefore, $\lim_{n\to\infty} s_n = s_m$.

Suppose R is infinite. Since Cauchy sequences are bounded, the Bolzano-Weirstrass Theorem (see Review 1) implies that R has an accumulation point, which we denote by $a \in \mathbb{R}$. Let $\epsilon > 0$. Then, there is an $N \in \mathbb{R}$ such that

$$n, m > N \Rightarrow |s_n - s_m| < \frac{\epsilon}{2}$$

Since a is an accumulation point, $N(a; \epsilon/2)$ contains infinitely many points of R. Hence, there is an m > N such that $s_m \in N(a; \epsilon/2)$. Then, for all n > N, we have

$$|s_n - a| = |s_n - s_m + s_m - a|$$

$$\leq |s_n - s_m| + |s_m - a|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

2.1 Subsequences

Definition 2.2. Let $s: \mathbb{N} \to \mathbb{R}$ and let $n: \mathbb{N} \to \mathbb{N}$ be a strictly increasing sequence. Then, the composition s(n) is called a *subsequence* of s, we denote the terms of the subsequence by

$$s_{n_1}, s_{n_2}, \ldots, s_{n_k}, \ldots$$

Example 2.3. Let $s_n = 1/n$. Then, both

$$t_k = 1/(2k)$$
 and $u_k = 1/(2k-1), \ k \in \mathbb{N}$.

are subsequences of s.

Theorem 2.4. Let $s: \mathbb{N} \to \mathbb{R}$ be convergent with limit L. Then, every subsequence of s also converges to L.

Proof. Let $n: \mathbb{N} \to \mathbb{N}$ be a strictly increasing sequence:

$$n_1 < n_2 < \ldots < n_k < n_{k+1} < \cdots$$

Then, $n_k \geq k$ for all $k \in \mathbb{N}$.

Let $\epsilon > 0$. Then, there is a $N \in \mathbb{R}$ such that

$$n > N \Rightarrow |s_n - L| < \epsilon.$$

Now,

$$k > N \Rightarrow n_k \ge k > N$$
$$\Rightarrow |s_{n_k} - N| < \epsilon$$

г		
L		

Theorem 2.5. Every bounded sequence has a convergent subsequence.

Proof. Let $s: \mathbb{N} \to \mathbb{R}$ be a bounded sequence and let

$$R = \{s_n \colon n \in \mathbb{N}\}$$

denote the range of s.

If R is finite, then there is an $x \in R$ such that $s_n = x$ for infinitely many n. That is, there exists indices

$$n_1 < n_2 < \dots < n_k < \dots$$

such that $s_{n_k} = x$ for all $k \in \mathbb{N}$.

If R is infinite, then the Bolzano-Weierstrass theorem implies that R has an accumulation point, which we denote by $a \in \mathbb{R}$. For each $k \in \mathbb{N}$, there are infinitely many sequence values in the neighborhood

$$A_k = (a - 1/k, a + 1/k).$$

Therefore, we can pick $s_{n_1} \in A_1$, and for $k \ge 2$ choose $s_{n_k} \in A_k$ with $n_k > n_{k-1}$.

3 Exercises

- I. Prove Theorem 2.4.
- II. Prove Theorem 2.5.

References

 J. LEBL, Basic Analysis: Introduction to Real Analysis, Creative Commons Attribution-Noncommercial-Share Alike, 6th ed., 2023.