Real Analysis

Thomas R. Cameron

November 10, 2023

1 Daily Quiz

2 Key Topics

Today we introduce the Upper and Lower Darboux Sums For further reading, see [1, Section 5.1].

2.1 Upper and Lower Darboux Sums

Definition 2.1. A partition P of [a, b] is a finite set $\{x_0, x_1, \ldots, x_n\}$ such that

$$a = x_0 < x_1 < \dots < x_n = b$$

If Q is a partition of [a, b] such that $P \subseteq Q$, we say that Q is a *refinement* of P.

Definition 2.2. Suppose that $f: [a, b] \to \mathbb{R}$ is bounded. Then, the *upper Darboux sum* of f with respect to P is

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i,$$

where $M_i = \sup\{f(x): x \in [x_{i-1}, x_i]\}$ and $\Delta x_i = x_i - x_{i-1}$. Similarly, the *lower Darboux sum* of f with respect to P is

$$L(f,P) = \sum_{i=1}^{n} m_i \Delta x_i$$

where $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$. Note that the existence of the infimum and supremum of the set $\{f(x) : x \in [x_{i-1}, x_i]\}$ is guaranteed by the completeness axiom since f is bounded.

Theorem 2.3. Suppose that $f: [a,b] \to \mathbb{R}$ is bounded. If P and Q are partitions of P, and Q is a refinement of P, then

$$L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P).$$

Proof. Let $P = \{x_0, x_1, \ldots, x_n\}$ be a partition of [a, b] and let $P^* = P \cup \{x^*\}$, where $x^* \in [a, b] \setminus P$. Then, there exists a $k \in \{1, \ldots, n\}$ such that $x_{k-1} < x^* < x_k$. Now, define

$$t_1 = \inf\{f(x) \colon x \in [x_{k-1}, x^*]\},\$$

$$t_2 = \inf\{f(x) \colon x \in [x^*, x_k]\}.$$

Then, $t_1 \ge m_k$ and $t_2 \ge m_k$. Therefore,

$$L(f, P^*) - L(f, P) = [t_1(x^* - x_{k-1}) + t_2(x_k - x^*)] - [m_k(x_k - x_{k-1})]$$

= $(t_1 - m_k)(x^* - x_{k-1}) + (t_2 - m_k)(x_k - x^*) \ge 0.$

So, $L(f, P^*) \ge L(f, P)$. If Q contains r more points than P, then we apply the above argument r times. Hence,

$$L(f, P) \le L(f, Q).$$

A similar argument shows that $U(f, Q) \leq U(f, P)$.

Corollary 2.4. Suppose that $f: [a,b] \to \mathbb{R}$ is bounded. If P and Q are partitions of [a,b], then $L(f,P) \leq U(f,Q)$.

Proof. Note that $P \cup Q$ is a refinement of both P and Q. Therefore, the previous theorem implies that

$$L(f, P) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, Q).$$

2.2 Examples

Example 2.5. Define $f: [0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Let P be any partition of [0, 1]. Then,

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} 1\Delta x_i = (1-0) = 1$$

and

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i = \sum_{i=1}^{n} 0 \Delta x_i = 0.$$

Example 2.6. Define $f: [a, b] \to \mathbb{R}$ by f(x) = c, for all $x \in [a, b]$. Let P be any partition of [a, b]. Then,

$$\sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} c \Delta x_i = c(b-a)$$

and

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i = \sum_{i=1}^{n} c \Delta x_i = c(b-a).$$

3 Exercises

References

[1] J. LEBL, *Basic Analysis: Introduction to Real Analysis*, Creative Commons Attribution-Noncommercial-Share Alike, 6th ed., 2023.