Real Analysis

Thomas R. Cameron

November 10, 2023

1 Daily Quiz

2 Key Topics

Today we introduce the the Upper and Lower Darboux Sums For further reading, see [\[1,](#page-1-0) Section 5.1].

2.1 Upper and Lower Darboux Sums

Definition 2.1. A partition P of [a, b] is a finite set $\{x_0, x_1, \ldots, x_n\}$ such that

$$
a = x_0 < x_1 < \cdots < x_n = b.
$$

If Q is a partition of [a, b] such that $P \subseteq Q$, we say that Q is a refinement of P.

Definition 2.2. Suppose that $f : [a, b] \to \mathbb{R}$ is bounded. Then, the upper Darboux sum of f with respect to P is

$$
U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i,
$$

where $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}\$ and $\Delta x_i = x_i - x_{i-1}$. Similarly, the lower Darboux sum of f with respect to P is

$$
L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i,
$$

where $m_i = \inf\{f(x): x \in [x_{i-1}, x_i]\}.$ Note that the existence of the infimum and supremum of the set ${f(x): x \in [x_{i-1}, x_i]}$ is guaranteed by the completeness axiom since f is bounded.

Theorem 2.3. Suppose that $f : [a, b] \to \mathbb{R}$ is bounded. If P and Q are partitions of P, and Q is a refinement of P, then

$$
L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P).
$$

Proof. Let $P = \{x_0, x_1, \ldots, x_n\}$ be a partition of $[a, b]$ and let $P^* = P \cup \{x^*\}$, where $x^* \in [a, b] \setminus P$. Then, there exists a $k \in \{1, \ldots, n\}$ such that $x_{k-1} < x^* < x_k$. Now, define

$$
t_1 = \inf\{f(x) : x \in [x_{k-1}, x^*]\},
$$

$$
t_2 = \inf\{f(x) : x \in [x^*, x_k]\}.
$$

Then, $t_1 \geq m_k$ and $t_2 \geq m_k$. Therefore,

$$
L(f, P^*) - L(f, P) = [t_1(x^* - x_{k-1}) + t_2(x_k - x^*)] - [m_k(x_k - x_{k-1})]
$$

= $(t_1 - m_k)(x^* - x_{k-1}) + (t_2 - m_k)(x_k - x^*) \ge 0.$

So, $L(f, P^*) \ge L(f, P)$. If Q contains r more points than P, then we apply the above argument r times. Hence,

$$
L(f, P) \le L(f, Q).
$$

A similar argument shows that $U(f, Q) \leq U(f, P)$.

 \Box

Corollary 2.4. Suppose that $f : [a, b] \to \mathbb{R}$ is bounded. If P and Q are partitions of $[a, b]$, then $L(f, P) \leq$ $U(f,Q).$

Proof. Note that $P \cup Q$ is a refinement of both P and Q. Therefore, the previous theorem implies that

$$
L(f, P) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, Q).
$$

2.2 Examples

Example 2.5. Define $f: [0,1] \to \mathbb{R}$ by

$$
f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}
$$

Let P be any partition of $[0, 1]$. Then,

$$
U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} 1 \Delta x_i = (1 - 0) = 1
$$

and

$$
L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i = \sum_{i=1}^{n} 0 \Delta x_i = 0.
$$

Example 2.6. Define $f: [a, b] \to \mathbb{R}$ by $f(x) = c$, for all $x \in [a, b]$. Let P be any partition of $[a, b]$. Then,

$$
\sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} c \Delta x_i = c(b - a)
$$

and

$$
L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i = \sum_{i=1}^{n} c \Delta x_i = c(b - a).
$$

3 Exercises

References

[1] J. LEBL, Basic Analysis: Introduction to Real Analysis, Creative Commons Attribution-Noncommercial-Share Alike, 6th ed., 2023.

