
Real Analysis

Thomas R. Cameron

November 15, 2023

1 Daily Quiz

2 Key Topics

Today we discuss the properties of the Riemann Integral. For further reading, see [1, Section 5.2].
Last time, we introduced the upper and lower Darboux integrals:∫ b

a

f(x)dx = U(f) = inf{U(f, P ) : P is a partition of [a, b]}

and ∫ b

a

f(x)dx = L(f) = sup{L(f, P ) : P is a partition of [a, b]},

where U(f, P ) and L(f, P ) are the upper and lower Darboux sums. We say that f is Riemann integrable if
U(f) = L(f). In addition, we proved the following result.

Theorem 2.1. Let f : [a, b] → R be bounded. Then, f is Riemann integrable if and only if for all ϵ > 0,
there exists a partition P of [a, b] such that U(f, P )− L(f, P ) < ϵ.

2.1 Linearity

In this section, we prove that the Riemann integral is a linear transformation over the space of integrable
functions.

Theorem 2.2. Let f : [a, b] → R and g : [a, b] → R be Riemann integrable functions. Then,

a. for all k ∈ R, kf is Riemann integrable and
∫ b

a
kf(x)dx = k

∫ b

a
f(x)dx,

b. f + g is Riemann integrable and
∫ b

a
(f + g) (x)dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx.

Proof.

a. Let k ≥ 0 and let P be any partition of [a, b]. Then, U(kf, P ) = kU(f, P ) and L(kf, P ) = kL(f, P ).
Therefore,

U(kf) = inf{U(kf, P ) : P is a partition of [a, b]}
= inf{kU(f, P ) : P is a partition of [a, b]}
= k inf{U(f, P ) : P is a partition of [a, b]}
= kU(f).

Similarly, L(kf) = kL(f). Since f is Riemann integrable, it follows that

L(kf) = kL(f) = kU(f) = U(kf).

Hence, kf is Riemann integrable and
∫ b

a
kf(x)dx = k

∫ b

a
f(x)dx.
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For k < 0 it is sufficient to show that if f is Riemann integrable, then −f is Riemann integrable

and
∫ b

a
(−f) = −

∫ b

a
f . To this end, note that for any partition P of [a, b], U(−f, P ) = −L(f, P ) and

L(−f, P ) = −U(f, P ). Therefore, U(−f) = −L(f) and L(−f) = −L(f).

b. Let P be any partition of [a, b]. Then, U(f+g, P ) ≤ U(f, P )+U(g, P ) and L(f+g, P ) ≥ L(f, P )+L(g, P ).
Let ϵ > 0. By Theorem 2.1, there exist partitions P1 and P2 of [a, b] such that

U(f, P1) < L(f, P1) +
ϵ

2
and U(g, P2) < L(g, P2) +

ϵ

2
.

Since P = P1 ∪ P2 is a refinement of both P1 and P2, it follows that

U(f, P ) < L(f, P ) +
ϵ

2
and U(g, P ) < L(g, P ) +

ϵ

2

Therefore, we have

U(f + g, P ) ≤ U(f, P ) + U(g, P ) < L(f, P ) + L(g, P ) + ϵ ≤ L(f + g, P ) + ϵ.

Hence, Theorem 2.1 implies that f + g is Riemann integrable. Furthermore,∫ b

a

(f + g) (x)dx <

∫ b

a

f(x)dx+

∫ b

a

g(x)dx+ ϵ

and ∫ b

a

(f + g) (x)dx >

∫ b

a

f(x)dx+

∫ b

a

g(x)dx− ϵ,

for all ϵ > 0. So, it follows that∫ b

a

(f + g) (x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

2.2 Additivity

In this section, we prove that the Riemann integral is additive with respect to its bounds.

Theorem 2.3. Suppose that f : [a, c] → R and f : [c, b] → R is Riemann integrable. Then, f : [a, b] → R is
Riemann integrable and ∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

Proof. Let ϵ > 0. By Theorem 2.1, there exists partitions P1 of [a, c] and P2 of [c, b] such that

U(f, P1)− L(f, P1) <
ϵ

2
and U(f, P2)− L(f, P2) <

ϵ

2
.

Then, P = P1 ∪ P2 is a partition of [a, b] and

U(f, P )− L(f, P ) = [U(f, P1) + U(f, P2)]− [L(f, P1) + L(f, P2)]

= [U(f, P1)− L(f, P1)] + [U(f, P2)− L(f, P2)]

<
ϵ

2
+

ϵ

2
= ϵ.

Hence, Theorem 2.1 implies that f : [a, b] → R is Riemann integrable. Furthermore,∫ b

a

f(x)dx ≤ U(f, P ) = U(f, P1) + U(f, P2)

< L(f, P1) + L(f, P2) + ϵ

≤
∫ c

a

f(x)dx+

∫ b

c

f(x)dx+ ϵ
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and ∫ b

a

f(x)dx ≥ L(f, P ) = L(f, P1) + L(f, P2)

> U(f, P1) + U(f, P2)− ϵ

≥
∫ c

a

f(x)dx+

∫ b

c

f(x)dx− ϵ,

for all ϵ > 0. So, it follows that ∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.
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