Real Analysis

Thomas R. Cameron

November 29, 2023

1 Daily Quiz

Let $f: [a, b] \to \mathbb{R}$ be monotone increasing. Prove that f is Riemann integrable.

2 Key Topics

Today we review the fundamental theorem of calculus, part I, and introduce part II of the theorem. For further reading, see [1, Section 5.3].

Recall part I of the fundamental theorem of calculus.

Theorem 2.1. Let $f: [a,b] \to \mathbb{R}$ be differentiable on [a,b]. If f' is Riemann integrable on [a,b], then

$$\int_{a}^{b} f' = f(b) - f(a).$$

2.1 Fundamental Theorem of Calculus: Part II

Theorem 2.2. Let $f: [a, b] \to \mathbb{R}$ be Riemann integrable. For each $x \in [a, b]$, let

$$F(x) = \int_{a}^{x} f(t)dt.$$

Then, F is uniformly continuous on [a, b]. Furthermore, if f is continuous at $c \in [a, b]$, then F is differentiable at c and F'(c) = f(c).

Proof. Since f is bounded, there exists an M > 0 such that $|f(x)| \le M$ for all $x \in [a, b]$. Let $\epsilon > 0$ and $\delta = \epsilon/M$. Let $x, y \in [a, b]$ such that $|x - y| < \delta$. If x > y, we have

$$\begin{aligned} |F(x) - F(y)| &= \left| \int_{a}^{x} f - \int_{a}^{y} f \right| \\ &= \left| \int_{y}^{x} f \right| \\ &\leq \int_{y}^{x} |f| \\ &\leq \int_{y}^{x} M = M(x - y) < \epsilon. \end{aligned}$$

Similarly, if x < y, we get $|F(y) - F(x)| < \epsilon$. Hence, F is uniformly continuous on [a, b].

Now, suppose that f is continuous at $c \in [a, b]$. Let $\epsilon > 0$ and let $\delta > 0$ such that for all $x \in [a, b]$, $|x - c| < \delta \Rightarrow |f(x) - f(c)| < \epsilon$. Let $x \in [a, b]$ such that $0 < |x - c| < \delta$. If x > c, we have

$$\begin{aligned} \left| \frac{F(x) - F(c)}{x - c} - f(c) \right| &= \left| \frac{1}{x - c} \left(\int_a^x f(t) dt - \int_a^c f(t) dt \right) - f(c) \right| \\ &= \left| \frac{1}{x - c} \int_c^x f(t) dt - \frac{1}{x - c} \int_c^x f(c) dt \right| \\ &= \left| \frac{1}{x - c} \int_c^x (f(t) - f(c)) dt \right| \\ &\leq \frac{1}{|x - c|} \int_c^x |f(t) - f(c)| dt < \epsilon. \end{aligned}$$

Similarly, if x < c, we get

$$\left|\frac{F(x) - F(c)}{x - c} - f(c)\right| < \epsilon.$$

Therefore,

$$F'(c) = \lim_{x \to c} \frac{F(x) - F(c)}{x - c} = f(c).$$

-	-	-	-
L			1

Example 2.3. Let $f(x) = \sqrt{5 + x^3}$ and define

$$F(x) = \int_0^x \sqrt{5+t^3} dt$$

for all $x \in [0, 4]$. Then, F is differentiable on [0, 4] and $F'(x) = \sqrt{5 + x^3}$.

Corollary 2.4. Let $f: [a, b] \to \mathbb{R}$ be continuous and $g: [c, d] \to \mathbb{R}$ be differentiable, where $g([c, d]) \subseteq [a, b]$. For each $x \in [c, d]$, let

$$F(x) = \int_{a}^{g(x)} f(t)dt.$$

Then, F is differentiable on [c,d] and F'(x) = f(g(x))g'(x).

Example 2.5. Let $f(x) = \sqrt{5+x^3}$ and define

$$F(x) = \int_0^{x^2} \sqrt{5+t^3} dt$$

for all $x \in [0, 2]$ Then, F is differentiable on [0, 2] and $F'(x) = \sqrt{5 + x^6}(2x)$.

3 Exercises

Prove Corollary 2.4.

References

[1] J. LEBL, *Basic Analysis: Introduction to Real Analysis*, Creative Commons Attribution-Noncommercial-Share Alike, 6th ed., 2023.