Real Analysis

Thomas R. Cameron

August 28, 2023

1 Daily Quiz

Prove the following statement: If $x = 3k + 1$, for some integer k, then x^2 is not divisible by 3.

2 Key Topics

Today we revisit Propositions 2.8–2.9 from 8/25/2023. Then, we introduce sets and basic set operations. For further reading, see [\[1,](#page-1-0) Sections 1.1, 1.3, 1.5–1.6].

2.1 Sets

A set is a collection of things, which are referred to as elements of the set. It is customary to use capital letters to designate a set, the symbol \in to denote those in the set, and \notin for those not in the set. For example, if $A = \{1, 2, 3, 4\}$, then $2 \in A$ and $5 \notin A$.

Definition 2.1. Let A and B be sets. We say that A is a *subset* of B, denoted $A \subseteq B$, if $\forall x \in A$, $x \in B$. If $A \subseteq B$ and $\exists x \in B \Rightarrow x \notin A$, then A is a proper subset of B, which we denote by $A \subset B$.

Definition 2.2. Let A and B be sets. We say that A is equal to B, written $A = B$, if $A \subseteq B$ and $B \subseteq A$.

Definition 2.3. We let \emptyset denote the *empty set*, $\mathbb N$ the set of *natural numbers*, $\mathbb Z$ the set of *integers*, $\mathbb Q$ the set of all *rational numbers*, and $\mathbb R$ the set of *real numbers*.

Definition 2.4. We define a *closed interval* by

$$
[a, b] = \{x \in \mathbb{R} : a \le x \le b\}
$$

a open interval by

$$
(a, b) = \{x \in \mathbb{R} : a < x < b\}
$$

and a half-open interval (or half-closed interval) by

 $[a, b) = \{x \in \mathbb{R}: a \leq x < b\}$ or $(a, b) = \{x \in \mathbb{R}: a < x \leq b\}$.

Example 2.5. Let $A = \{x \in \mathbb{Z}: 4|x\}$ and let $B = \{x \in \mathbb{Z}: 2|x\}$. For every $x \in A$ there exists an integer k such that $x = 4k$. Therefore, $x = 2(2k)$, which implies that $x \in B$. Hence, $A \subseteq B$. Note that $A \neq B$ since $2 \in B$ and $2 \notin A$.

2.2 Basic Set Operations

In this section, we review the basic set operations, which allow us to combine sets to create new sets.

Definition 2.6. Let A and B be sets. The union of A and B (denoted $A \cup B$), the intersection of A and B (denote $A \cap B$), and the *complement* of B in A (denoted $A \setminus B$) are given by

$$
A \cup B = \{x: x \in A \lor x \in B\}
$$

$$
A \cap B = \{x: x \in A \land x \in B\}
$$

$$
A \setminus B = \{x: x \in A \land x \notin B\}
$$

If A is a universal set, then the complement of B in A is denoted \overline{B} and referred to as the *complement* of B.

Definition 2.7. Let A and B be sets. A and B are said to be disjoint provided that $A \cap B = \emptyset$.

We often want to perform set operations over an entire set of sets. To this end, let $\mathcal F$ denote a set of sets. Then, the union and intersection over the entire set is defined as follows

$$
\bigcup_{A \in \mathcal{F}} A = \{x \colon \; \exists A \in \mathcal{F} \; \ni \; x \in A\}
$$

and

$$
\bigcap_{A\in\mathcal{F}}A=\left\{x\colon\;\forall A\in\mathcal{F},\;x\in A\right\}.
$$

Theorem 2.8. Let A , B , and C be sets. Then, the following statements are true.

a. $A \cap \overline{B} = A \setminus B$ b. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ c. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ d. $\overline{B \cup C} = \overline{B} \cap \overline{C}$ e. $\overline{B\cap C}=\overline{B}\cup \overline{C}$

3 Exercises

- I. Prove Theorem 2.8.
- II. Define $\mathcal{F} = \{(-1/x, 1/x) : x \in \mathbb{R} \wedge x > 0\}$. Find

$$
\bigcap_{A\in\mathcal{F}}A.
$$

References

[1] R. HAMMACK, Book of Proof, Creative Commons Attribution-NonCommercial-NoDerivative, 3rd ed., 2018.