Real Analysis

Thomas R. Cameron

August 30, 2023

1 Daily Quiz

Let A and B be sets. Prove that

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

2 Key Topics

Today we introduce ordered pairs and Cartesian products which we use to define relations. For further reading, see [\[1,](#page-1-0) Chapter 11].

2.1 Cartesian Products

Definition 2.1. The *ordered pair* (a, b) is an ordered set of two elements where

$$
(a,b) = (c,d) \Leftrightarrow a = c \ \land \ b = d.
$$

The following theorem shows that we can define an ordered pair as a set of sets.

Theorem 2.2. Let

$$
(a,b) = \{\{a\}, \{a,b\}\}.
$$

Then, $(a, b) = (c, d)$ if and only if $a = c$ and $b = d$.

Definition 2.3. Let A and B be sets. The Cartesian product of A and B, written $A \times B$, is defined by

$$
A \times B = \{(a, b) \colon a \in A \land b \in B\}
$$

Example 2.4. Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Then,

$$
A \times B = \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}.
$$

Example 2.5. Let $A = [1, 4)$ and $B = (2, 4]$. Then, $A \times B = \{(x, y): 1 \le x < 4 \land 2 < y \le 4\}$.

2.2 Relations

Definition 2.6. Let A and B be sets. A relation between A and B is any subset $R \subseteq A \times B$. We say that $a \in A$ and $b \in B$ are related by R if $(a, b) \in R$, which we often denote by aRb.

Definition 2.7. Let S be a set. A relation $R \subseteq S \times S$ on S is an *equivalence relation* if $\forall x, y, z \in S$ the following properties hold:

Definition 2.8. Let $n \in \mathbb{N}$. Define the *congruence modulo* n relation on Z as follows

$$
a \equiv b \mod n
$$

if $n|(a - b)$.

Theorem 2.9. Let $n \in \mathbb{N}$. Then, the congruence modulo n relation is an equivalence relation.

Given an equivalence relation R on a set S , it is natural to group together all the elements that are related to a particular element. More precisely, we define the *equivalence class* (with respect to R) of $x \in S$ as

$$
E_x = \{ y \in S : yRx \}.
$$

Example 2.10. Let R denote the congruence modulo 2 relation on \mathbb{Z} . Then,

$$
E_0 = \{ y \in \mathbb{Z} : yR0 \}
$$

= \{ y \in \mathbb{Z} : 2|(y - 0) \}
= \{ y \in \mathbb{Z} : \exists k \in \mathbb{Z} \ni y = 2k \}

and similarly

 $E_1 = \{y \in \mathbb{Z}: \exists k \in \mathbb{Z} \; \ni \; y = 2k + 1\}.$

Hence, the equivalence classes E_0 and E_1 are the set of even and odd integers, respectively.

Definition 2.11. A partition of a set S is a set P of non-empty subsets of S such that

a. $\forall x \in S, \exists A \in \mathcal{P} \exists x \in A$

b. $\forall A, B \in \mathcal{P}, A \neq B \Rightarrow A \cap B = \emptyset.$

Any member of the set P is called a *piece* of the partition.

Theorem 2.12. Let R be an equivalence relation on a set S. Then, $\{E_x: x \in S\}$ is a partition of S. Conversely, if P is a partition of S, let R be defined by xRy if and only if x and y are in the same piece of the partition. Then, R is an equivalence relation and the corresponding partition into equivalence classes is the same as P.

3 Exercises

- I. Prove Theorem [2.9.](#page-1-1)
- II. Prove Theorem [2.12.](#page-1-2)
- III. Use the Euclid division lemma and Theorem [2.12](#page-1-2) to prove that

$$
\mathcal{P} = \{E_0, E_1\}
$$

is a partition of \mathbb{Z} , where E_0 and E_1 are the equivalence classes from Example [2.10.](#page-1-3)

References

[1] R. HAMMACK, Book of Proof, Creative Commons Attribution-NonCommercial-NoDerivative, 3rd ed., 2018.