Real Analysis

Thomas R. Cameron

August 30, 2023

1 Daily Quiz

Let A and B be sets. Prove that

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

2 Key Topics

Today we introduce ordered pairs and Cartesian products which we use to define relations. For further reading, see [1, Chapter 11].

2.1 Cartesian Products

Definition 2.1. The ordered pair (a, b) is an ordered set of two elements where

$$(a,b) = (c,d) \Leftrightarrow a = c \land b = d.$$

The following theorem shows that we can define an ordered pair as a set of sets.

Theorem 2.2. Let

$$(a,b) = \{\{a\}, \{a,b\}\}.$$

Then, (a, b) = (c, d) if and only if a = c and b = d.

Definition 2.3. Let A and B be sets. The *Cartesian product* of A and B, written $A \times B$, is defined by

$$A \times B = \{(a, b) \colon a \in A \land b \in B\}$$

Example 2.4. Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Then,

$$A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$$

Example 2.5. Let A = [1, 4) and B = (2, 4]. Then, $A \times B = \{(x, y): 1 \le x < 4 \land 2 < y \le 4\}$.

2.2 Relations

Definition 2.6. Let A and B be sets. A *relation* between A and B is any subset $R \subseteq A \times B$. We say that $a \in A$ and $b \in B$ are *related* by R if $(a, b) \in R$, which we often denote by aRb.

Definition 2.7. Let S be a set. A relation $R \subseteq S \times S$ on S is an *equivalence relation* if $\forall x, y, z \in S$ the following properties hold:

a. xRx		(reflexive property),
b. $xRy \Rightarrow$	$\rightarrow yRx$	(symmetric property),
c. (xRy)	$\land yRz) \Rightarrow xRz$	(transitive property).

Definition 2.8. Let $n \in \mathbb{N}$. Define the *congruence modulo* n relation on \mathbb{Z} as follows

$$a \equiv b \mod n$$

if n|(a-b).

Theorem 2.9. Let $n \in \mathbb{N}$. Then, the congruence modulo n relation is an equivalence relation.

Given an equivalence relation R on a set S, it is natural to group together all the elements that are related to a particular element. More precisely, we define the *equivalence class* (with respect to R) of $x \in S$ as

$$E_x = \{ y \in S \colon yRx \}.$$

Example 2.10. Let R denote the congruence modulo 2 relation on \mathbb{Z} . Then,

$$E_0 = \{ y \in \mathbb{Z} \colon yR0 \}$$

= $\{ y \in \mathbb{Z} \colon 2|(y-0) \}$
= $\{ y \in \mathbb{Z} \colon \exists k \in \mathbb{Z} \ni y = 2k \}$

and similarly

 $E_1 = \{ y \in \mathbb{Z} : \exists k \in \mathbb{Z} \ni y = 2k+1 \}.$

Hence, the equivalence classes E_0 and E_1 are the set of even and odd integers, respectively.

Definition 2.11. A partition of a set S is a set \mathcal{P} of non-empty subsets of S such that

a. $\forall x \in S, \exists A \in \mathcal{P} \ni x \in A$

b. $\forall A, B \in \mathcal{P}, \ A \neq B \Rightarrow A \cap B = \emptyset.$

Any member of the set \mathcal{P} is called a *piece* of the partition.

Theorem 2.12. Let R be an equivalence relation on a set S. Then, $\{E_x : x \in S\}$ is a partition of S. Conversely, if \mathcal{P} is a partition of S, let R be defined by xRy if and only if x and y are in the same piece of the partition. Then, R is an equivalence relation and the corresponding partition into equivalence classes is the same as \mathcal{P} .

3 Exercises

- I. Prove Theorem 2.9.
- II. Prove Theorem 2.12.
- III. Use the Euclid division lemma and Theorem 2.12 to prove that

$$\mathcal{P} = \{E_0, E_1\}$$

is a partition of \mathbb{Z} , where E_0 and E_1 are the equivalence classes from Example 2.10.

References

 R. HAMMACK, Book of Proof, Creative Commons Attribution-NonCommercial-NoDerivative, 3rd ed., 2018.