Real Analysis

Thomas R. Cameron

September 11, 2023

1 Daily Quiz

State the well-ordering property of N and the principle of mathematical induction.

2 Key Topics

Today we finish our discussion of induction and introduce the notion of an ordered field. For further reading, see [\[1,](#page-1-0) Section 1.1].

2.1 Mathematical Induction

On September 8 2023, we proved that the well-ordering principle of N implies the principle of mathematical induction. Now, we prove that the principle of mathematical induction implies the well-ordering principle of N.

Theorem 2.1. If the principle of mathematical induction holds, then the well-ordering principle of $\mathbb N$ holds.

Proof. For the sake of contradiction, suppose that there exists a non-empty subsets $S \subseteq \mathbb{N}$ that has no minimal element. Let $P(n)$ be the statement $n \notin S$ for all $n \in \mathbb{N}$. Clearly $P(1)$ is true since if $1 \in S$ then 1 would be the minimal element of S. Since the principle of mathematical induction holds, it follows that

$$
P(1), P(2), P(3), \ldots
$$

is true. Therefore, $S = \emptyset$, which is a contradiction.

2.2 Ordered Fields

We begin by assuming the existence of a set \mathbb{R} , called the set of real numbers, and two operations $+$ and \cdot , called addition and multiplication, respectively, such that the following axioms hold.

Axiom 2.2 (Field \mathbb{R}).

- a. $\forall x, y \in \mathbb{R}, x + y \in \mathbb{R}$
- b. $\forall x, y \in \mathbb{R}, x + y = y + x$
- c. $\forall x, y, z \in \mathbb{R}, x + (y + z) = (x + y) + z$
- d. There is a unique $0 \in \mathbb{R}$ such that $x + 0 = x$, $\forall x \in \mathbb{R}$

e.
$$
\forall x \in \mathbb{R}, \exists -x \in \mathbb{R} \ni x + (-x) = 0
$$

- f. $\forall x, y \in \mathbb{R}, x \cdot y \in \mathbb{R}$
- g. $\forall x, y, z \in \mathbb{R}, x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- h. There is a unique $1 \in \mathbb{R}$ such that $x \cdot 1 = x$, $\forall x \in \mathbb{R}$

 \Box

- i. $\forall x \in \mathbb{R} \setminus \{0\}, \exists 1/x \in \mathbb{R} \ni x \cdot (1/x) = 1$
- j. $\forall x, y, z \in \mathbb{R}, x \cdot (y + z) = x \cdot y + x \cdot z$
- Axiom 2.3 (Ordering \mathbb{R}).
- a. For all $x, y \in \mathbb{R}$, exactly one of the relations $x = y, x > y, x < y$ holds
- b. $\forall x, y, z \in \mathbb{R}, (x < y) \land (y < z) \Rightarrow x < z$
- c. $\forall x, y, z \in \mathbb{R}, x < y \Rightarrow x + z < y + z$
- d. $\forall x, y, z \in \mathbb{R}, (x < y) \land (z > 0) \Rightarrow xz < yz$

Assuming Axioms [2.2](#page-0-0) and [2.3](#page-1-1) give us the following useful properties of the real numbers.

- **Theorem 2.4.** Let $x, y, z \in \mathbb{R}$. Then
- a. $(x + y = y + z) \Rightarrow x = y$ $b. x \cdot 0 = 0$ c. $(-1) \cdot x = -x$ d. $xy = 0 \Leftrightarrow (x = 0 \vee y = 0)$ e. $x < y \Leftrightarrow -y < -x$. f. $(x < y \land z < 0) \Rightarrow (xz > yz)$

Theorem 2.5. Let $x, y \in \mathbb{R}$ such that $x \leq y + \epsilon$, $\forall \epsilon > 0$. Then $x \leq y$.

Definition 2.6. Let $x \in \mathbb{R}$. Then the *absolute value* of x is defined by

$$
|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}
$$

Theorem 2.7. Let $x, y, a \in \mathbb{R}$, where $a \geq 0$. Then

- a. $|x| \ge 0$
- b. $|x| \leq a \Leftrightarrow -a \leq x \leq a$
- c. $|xy| = |x| \cdot |y|$
- d. $|x + y| \leq |x| + |y|$

3 Exercises

- I. Prove Theorem 2.4
- II. Prove Theorem 2.5
- III. Prove Theorem 2.7

References

[1] W. TRENCH, *Introduction to Real Analysis*, Creative Commons Attribution-Noncommercial-Share Alike, 2nd ed., 2013.