Real Analysis

Thomas R. Cameron

September 20, 2023

1 Daily Quiz

Let $S = (1, 2) \cup (2, 3]$. Find the interior, boundary, and accumulation points of S.

2 Key Topics

On 9/13/2023 - 9/15/2023, we introduced the notion of bounded subsets and on 9/18/2023 introduced open and closed sets. Today, we continue our investigation of the real numbers by introducing compact sets, which are open subsets of \mathbb{R} that are both closed and bounded. For further reading, see [1, Section 1.3].

2.1 Compact Sets

Definition 2.1. Let $S \subseteq \mathbb{R}$ and let \mathcal{F} be a set of open sets. We say that \mathcal{F} is an *open cover* of S if

$$S \subseteq \bigcup_{A \in \mathcal{F}} A.$$

If $\mathcal{G} \subseteq \mathcal{F}$ is an open cover of S, then we say that \mathcal{G} is a *subcover* of S.

Definition 2.2. Let $S \subseteq \mathbb{R}$. We say that S is compact if and only if every open cover of S contains a finite subcover.

Lemma 2.3. If S is a nonempty closed bounded subset of \mathbb{R} , then S has a maximum and a minimum.

Theorem 2.4 (Heine-Borel). A subset S of \mathbb{R} is compact if and only if S is closed and bounded.

3 Exercises

- I. Prove Lemma 2.3
- II. Prove Theorem 2.4

References

 W. TRENCH, Introduction to Real Analysis, Creative Commons Attribution-Noncommercial-Share Alike, 2nd ed., 2013.