Real Analysis

Thomas R. Cameron

September 6, 2023

1 Daily Quiz

Define $f:(-\infty, 0] \rightarrow[0, \infty)$ by

$$
f(x)=x^{2} .
$$

Show that f is bijective and describe f^{-1} by a formula.

2 Key Topics

Today we introduce the cardinality of a set and use bijective functions to compare the cardinality of infinite sets. For further reading, see [1, Chapter 14].

The cardinality of a set is defined to be the number of elements in that set. We often denote the cardinality of a set S by $|S|$. For finite sets, cardinality is a straightforward concept; however, for infinite sets it is more subtle.

Definition 2.1. Two sets S and T have the same cardinality, or are equinumerous, if there exists a bijective function from S onto T. We denote equinumerous sets by $S \sim T$.

Proposition 2.2. Let \mathcal{F} be a set of sets. The relation \sim is an equivalence relation on \mathcal{F}.
Definition 2.3. Let $I_{n}=\{1,2, \ldots, n\}$. A set S is finite if $S=\emptyset$ or if $I_{n} \sim S$ for some $n \in \mathbb{N}$. If S is not finite, then it is infinite.

Definition 2.4. A set S is denumerable if $\mathbb{N} \sim S$. If a set is finite or denumerable, then it is countable. If a set is not countable, then it is uncountable

2.1 Countable Sets

To begin, we show that \mathbb{N} and \mathbb{Z} are equinumerous, despite the fact that \mathbb{N} is a proper subset of \mathbb{Z}.
Example 2.5. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ by the formula

$$
f(n)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{1-n}{2} & \text { if } n \text { is odd }\end{cases}
$$

To show that f is injective, let $n, n^{\prime} \in \mathbb{N}$ and assume that $f(n)=f\left(n^{\prime}\right)$. Then, n and n^{\prime} must either both be even or both be odd. If n and n^{\prime} are both even, then there exists $j, k \in \mathbb{N}$ such that $n=2 j$ and $n^{\prime}=2 k$. Moreover, since $f(n)=f\left(n^{\prime}\right)$, it follows that $j=k$ and $n=n^{\prime}$. If n and n^{\prime} are both odd, then there exists $j, k \in \mathbb{N}$ such that $n=2 j+1$ and $n^{\prime}=2 k+1$. Moreover, since $f(n)=f\left(n^{\prime}\right)$, it follows that $j=k$ and $n=n^{\prime}$.

To show that f is surjective, let $m \in \mathbb{Z}$. If $m \geq 1$, then define $n \in \mathbb{N}$ as $n=2 m$. Clearly, n is even so $f(n)=\frac{n}{2}=m$. If $m \leq 0$, then define $n \in \mathbb{N}$ as $n=-(2 m-1)=2(-m)+1$. Clearly, n is odd so $f(n)=\frac{1-n}{2}=m$.

Next, we show that \mathbb{Q} is countable using the following theorem. Note that you will prove this Theorem in Homework Assignment 2.

Theorem 2.6. Let S be a non-empty set. The following conditions are equivalent.
a. S is countable.
b. There exists an injection $f: S \rightarrow \mathbb{N}$.
c. There exists a surjection $g: \mathbb{N} \rightarrow S$.

Corollary 2.7. Let S and T be non-empty countable sets. Then, $S \cup T$ is countable.
Corollary 2.8. Let S and T be non-empty countable sets. Then, $S \times T$ is countable.
Corollary 2.9. The set \mathbb{Q} is countable.

2.2 Uncountable Sets

Note that you will prove the following Theorem in Homework Assignment 2.
Theorem 2.10. The set \mathbb{R} is uncountable.
Definition 2.11. Let be any set S. The power set of S, denoted by $\mathcal{P}(S)$, is the set of all subsets of S.
Theorem 2.12. For any set S, there is no surjection $f: S \rightarrow \mathcal{P}(S)$.

3 Exercises

I. Prove Corollary 2.7
II. Prove Corollary 2.8
III. Prove Corollary 2.9

References

[1] R. Hammack, Book of Proof, Creative Commons Attribution-NonCommercial-NoDerivative, 3rd ed., 2018.

