Real Analysis

Thomas R. Cameron

September 6, 2023

1 Daily Quiz

Define $f: (-\infty, 0] \to [0, \infty)$ by

 $f(x) = x^2.$

Show that f is bijective and describe f^{-1} by a formula.

2 Key Topics

Today we introduce the cardinality of a set and use bijective functions to compare the cardinality of infinite sets. For further reading, see [1, Chapter 14].

The *cardinality* of a set is defined to be the number of elements in that set. We often denote the cardinality of a set S by |S|. For finite sets, cardinality is a straightforward concept; however, for infinite sets it is more subtle.

Definition 2.1. Two sets S and T have the same cardinality, or are *equinumerous*, if there exists a bijective function from S onto T. We denote equinumerous sets by $S \sim T$.

Proposition 2.2. Let \mathcal{F} be a set of sets. The relation \sim is an equivalence relation on \mathcal{F} .

Definition 2.3. Let $I_n = \{1, 2, ..., n\}$. A set S is *finite* if $S = \emptyset$ or if $I_n \sim S$ for some $n \in \mathbb{N}$. If S is not finite, then it is *infinite*.

Definition 2.4. A set S is *denumerable* if $\mathbb{N} \sim S$. If a set is finite or denumerable, then it is *countable*. If a set is not countable, then it is *uncountable*

2.1 Countable Sets

To begin, we show that \mathbb{N} and \mathbb{Z} are equinumerous, despite the fact that \mathbb{N} is a proper subset of \mathbb{Z} . Example 2.5. Define $f: \mathbb{N} \to \mathbb{Z}$ by the formula

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{1-n}{2} & \text{if } n \text{ is odd.} \end{cases}$$

To show that f is injective, let $n, n' \in \mathbb{N}$ and assume that f(n) = f(n'). Then, n and n' must either both be even or both be odd. If n and n' are both even, then there exists $j, k \in \mathbb{N}$ such that n = 2j and n' = 2k. Moreover, since f(n) = f(n'), it follows that j = k and n = n'. If n and n' are both odd, then there exists $j, k \in \mathbb{N}$ such that n = 2j + 1 and n' = 2k + 1. Moreover, since f(n) = f(n'), it follows that j = k and n = n'.

To show that f is surjective, let $m \in \mathbb{Z}$. If $m \ge 1$, then define $n \in \mathbb{N}$ as n = 2m. Clearly, n is even so $f(n) = \frac{n}{2} = m$. If $m \le 0$, then define $n \in \mathbb{N}$ as n = -(2m - 1) = 2(-m) + 1. Clearly, n is odd so $f(n) = \frac{1-n}{2} = m$.

Next, we show that \mathbb{Q} is countable using the following theorem. Note that you will prove this Theorem in Homework Assignment 2.

Theorem 2.6. Let S be a non-empty set. The following conditions are equivalent.

- a. S is countable.
- b. There exists an injection $f: S \to \mathbb{N}$.
- c. There exists a surjection $g: \mathbb{N} \to S$.

Corollary 2.7. Let S and T be non-empty countable sets. Then, $S \cup T$ is countable.

Corollary 2.8. Let S and T be non-empty countable sets. Then, $S \times T$ is countable.

Corollary 2.9. The set \mathbb{Q} is countable.

2.2 Uncountable Sets

Note that you will prove the following Theorem in Homework Assignment 2.

Theorem 2.10. The set \mathbb{R} is uncountable.

Definition 2.11. Let be any set S. The *power set* of S, denoted by $\mathcal{P}(S)$, is the set of all subsets of S. **Theorem 2.12.** For any set S, there is no surjection $f: S \to \mathcal{P}(S)$.

3 Exercises

- I. Prove Corollary 2.7
- II. Prove Corollary 2.8
- III. Prove Corollary 2.9

References

 R. HAMMACK, Book of Proof, Creative Commons Attribution-NonCommercial-NoDerivative, 3rd ed., 2018.