Real Analysis

Thomas R. Cameron

September 8, 2023

1 Daily Quiz

Prove that $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by

 $f(m,n) = 2^{m-1}(2n-1)$

is bijective. Hint: every natural number can be written uniquely as a product of primes.

2 Key Topics

Today we finish our discussion of countable and uncountable sets and we introduce mathematical induction. For further reading, see [1, Chapters 10 and 14].

2.1 Uncountable Sets

On September 6 2023, we proved that the rational numbers were countable, i.e., there exists a bijection $f: \mathbb{N} \to \mathbb{Q}$. You will prove the following theorem in Homework Assignment 2.

Theorem 2.1. The set \mathbb{R} is uncountable.

Now, we will use the power set to establish a spectrum of infinite cardinalities.

Definition 2.2. Let S be any set. The *power set* of S, denoted by $\mathcal{P}(S)$, is the set of all subsets of S.

Theorem 2.3. For any set S, there is no surjection $f: S \to \mathcal{P}(S)$.

Proof. Suppose there exists a surjection $f: S \to \mathcal{P}(S)$. Define

$$T = \{ x \in S \colon x \notin f(x) \}.$$

Clearly $T \subseteq S$; hence, $T \in \mathcal{P}(S)$. Since f is surjective, there exists a $y \in S$ such that T = f(y).

If $y \in T$, then $y \in f(y)$ which implies that $y \notin T$. If $y \notin T$, then $t \notin f(y)$ which implies that $y \in T$. Hence, we have a contradiction and it follows that f can be surjective.

By applying Theorem 2.3 recursively, we obtain a sequence of infinite cardinalities:

$$|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \cdots$$

2.2 Mathematical Induction

Axiom 2.4 (Well-Ordering of N). Every non-empty subset $S \subseteq \mathbb{N}$ has an element $m \in S$ such that $m \leq k$ for all $k \in S$.

Theorem 2.5 (Principle of Mathematical Induction). Let P(n) be a statement that is either true or false for each $n \in \mathbb{N}$. Then, P(n) is true for all $n \in \mathbb{N}$ provided that

a. P(1) is true and

b. For each $k \in \mathbb{N}$, if P(k) is true, then P(k+1) is true.

Proof. For the sake of contradiction, suppose that a. and b. hold but P(n) is false for some $n \in \mathbb{N}$. Define

$$S = \{n \in \mathbb{N} : P(n) \text{ is false}\}.$$

Then, S is a non-empty subset of N. So, the well-ordering property of N states that there exists a $m \in S$ such that $m \leq k$ for all $k \in S$. By a., m > 1. Therefore, $(m-1) \in \mathbb{N}$ and $(m-1) \notin S$. So, b. implies that P(m) is true which is a contradiction.

Example 2.6. We will use mathematical induction to prove that

$$1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1), \ \forall n \in \mathbb{N}.$$

The base case is true since

$$1 = \frac{1}{2}(1)(1+1).$$

Now, let $k \in \mathbb{N}$ and assume that

$$1 + 2 + 3 + \dots + k = \frac{1}{2}k(k+1)$$

Then,

$$1 + 2 + 3 + \dots + k + (k + 1) = \frac{1}{2}k(k + 1) + (k + 1)$$
$$= \frac{k(k + 1) + 2(k + 1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{1}{2}(k + 1)(k + 2)$$

3 Exercises

- I. Prove Theorem 2.3
- II. Prove Theorem 2.5
- III. Perform Example 2.6

References

 R. HAMMACK, Book of Proof, Creative Commons Attribution-NonCommercial-NoDerivative, 3rd ed., 2018.