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1 Power Series

Let a : N → R be a sequence of real numbers and let x0 ∈ R. The series

∞∑
k=0

ak(x− x0)
k = a0 + a1(x− x0) + a2(x− x0)

2 + a3(x− x0)
3 + · · · ,

is called a power series. The number ak is called the kth coefficient of the series, and the number x0 is the
center of the series.

The radius of convergence of the power series is a value R ≥ 0 such that the power series converges
absolutely for all x ∈ (x0 − R, x0 + R), and diverges for all x ∈ R such that |x− x0| > R. The following
theorem uses the ratio test to determine the radius of convergence of a power series.

Theorem 1.1. Let
∑∞

k=0 ak(x−x0)
k be a power series and let ρ = limk→∞

∣∣∣ak+1

ak

∣∣∣, provided the limit exists.

Then, the radius of convergence of the power series is

R =


1
ρ if 0 < ρ < ∞
∞ if ρ = 0

0 if ρ = ∞

Proof. By the ratio test, the series
∑∞

k=0 ak(x− x0)
k converges absolutely if

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ |x− x0| = ρ |x− x0| < 1,

and diverges if ρ |x− x0| > 1. If ρ = ∞, then we have absolute convergence only when x = x0. If ρ = 0,
then we have absolute convergence for all x ∈ R. If 0 < ρ < ∞, then we have absolute convergence when

|x− x0| <
1

ρ
,

and divergence when |x− x0| > 1
ρ .

The interval of convergence of the power series is the set of all x such that the series converges. The value
x0 is always in the interval of convergence. If R is positive, then (x0 −R, x0 +R) is a subset of the interval
of convergence. If R is finite and non-zero, then the end points x0 ± R may be included in the interval of
convergence. For example, consider the power series

∞∑
k=1

(−1)k+1

k
(x− 1)k.

The radius of convergence of this series is R = 1 and its interval of convergence is (0, 2].
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2 Pointwise vs Uniform Convergence

Let (fn)
∞
n=0 be a sequence of functions defined on a subset S ⊆ R. This sequence converges pointwise on S

if for each x ∈ S, the sequence of numbers (fn(x))
∞
n=0 converges. In this case, we define f : S → R by

f(x) = lim
n→∞

fn(x).

For example, consider the sequence of functions defined by fn(x) = xn on [0, 1]. Then, for x ∈ [0, 1),
limn→∞ xn = 0; for x = 1, we have limn→∞ fn(1) = 1. Thus, the sequence fn(x) = xn converges pointwise
on [0, 1]; furthermore, the limit function is given by

f(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1.

Note that each fn(x) is continuous on [0, 1]; however, f(x) is not continuous at x = 1. In terms of limit
operations, we have

lim
x→1−

(
lim

n→∞
fn(x)

)
= lim

x→1−
(0) = 0

whereas

lim
n→∞

(
lim

x→1−
fn(x)

)
= lim

n→∞
(1) = 1.

Let (fn)
∞
n=0 be a sequence of functions defined on a subset S ⊆ R. This sequence converges uniformly

on S to a function f : S → R if for all ϵ ∈ R>0, there is a N ∈ N such that

n ≥ N ⇒ |fn(x)− f(x)| < ϵ,

for all x ∈ S. It is important to clarify the distinction between pointwise and uniform convergence. With
pointwise convergence, for each x ∈ S, there is a f(x) ∈ R such that for all ϵ ∈ R>0, there is a N ∈ N such
that

n ≥ N ⇒ |fn(x)− f(x)| < ϵ.

In this case, the N may depend on both x and ϵ. With uniform convergence, there exists a function f : S → R
such that for all ϵ ∈ R>0, there is a N ∈ N such that

n ≥ N ⇒ |fn(x)− f(x)| < ϵ,

for all x ∈ S. In this case, the N only depends on ϵ.
To illustrate the difference between pointwise and uniform convergence, consider the sequence of functions

defined by fn(x) = xn on [0, 1]. We have seen that this sequence converges pointwise to the function f : S → R
defined by

f(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1.

However, if we fix ϵ = 1/2, then for all n ∈ N

2−1/n ≤ x < 1 ⇒ fn(x) ≥ 1/2.

Therefore, for all n ∈ N, there is an x ∈ [0, 1) such that

|fn(x)− f(x)| = fn(x) ≥ 1/2 = ϵ.

Thus, this sequence does not converge uniformly.
Now, let t ∈ (0, 1). Then, for any ϵ ∈ R>0, there is a N ∈ N such that

tN < ϵ.

So, for all n ≥ N , tn < ϵ. Therefore, for all n ≥ N ,

|fn(x)− 0| = xn ≤ tn < ϵ,

for all x ∈ [0, t]. Thus, the sequence fn(x) = xn converges uniformly to f(x) = 0 on [0, t].
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3 Applications of Uniform Convergence

Theorem 3.1. Let (fn)
∞
n=0 be a sequence of continuous functions defined on a set S ⊂ R that converges

uniformly to f : S → R. Then, f is continuous on S.

Theorem 3.2. Let (fn)
∞
n=0 be a sequence of Riemann integrable functions defined on the interval [a, b] that

converges uniformly to f : [a, b] → R. Then, f is Riemann integrable and∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx.

Theorem 3.3. Let (fn)
∞
n=0 be a sequence of differentiable functions defined on the interval [a, b] that con-

verges to f : [a, b] → R. If (f ′
n) converges uniformly on [a, b], then f is differentiable and

f ′(x) = lim
n→∞

f ′
n(x),

for all x ∈ [a, b].

4 Uniform Convergence of Power Series

Theorem 4.1. Suppose the power series
∑∞

k=0 ak(x−x0)
k has radius of convergence R, where 0 < R ≤ ∞.

Let fn(x) =
∑n

k=0 ak(x− x0)
k and 0 < K < R. Then, fn(x) converges uniformly on [x0 −K,x0 +K].

Theorem 4.2. Suppose the power series
∑∞

k=0 ak(x−x0)
k has radius of convergence R, where 0 < R ≤ ∞.

Let fn(x) =
∑n

k=0 ak(x− x0)
k. If the power series converges at x0 +R, then fn(x) converges uniformly on

[x0, x0+R]. Similarly, if the power seres converges at x0−R, then fn(x) converges uniformly on [x0−R, x0].
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