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1 Power Series

Let a: N — R be a sequence of real numbers and let o € R. The series

oo

Zak(x - xo)k =ag+ ai(zx — x0) + az(z — 1:0)2 +as(x — 1:0)3 + ey
k=0

is called a power series. The number ay, is called the kth coefficient of the series, and the number z is the
center of the series.

The radius of convergence of the power series is a value R > 0 such that the power series converges
absolutely for all x € (29 — R,z¢ + R), and diverges for all € R such that |z — z9| > R. The following
theorem uses the ratio test to determine the radius of convergence of a power series.
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Theorem 1.1. Let Y ;o ai(z —z0)" be a power series and let p = limy,_,

, provided the limit exists.

Then, the radius of convergence of the power series is

% if 0 < p < o0
R=<¢c0 ifp=0
0 ifp=o0

Proof. By the ratio test, the series > o ax(z — z¢)* converges absolutely if
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lim

k—o0

[z — x| = plz —z0] <1,

and diverges if p|z — x| > 1. If p = oo, then we have absolute convergence only when x = zy. If p = 0,
then we have absolute convergence for all z € R. If 0 < p < oo, then we have absolute convergence when
1
|$ 4’$0|<< ]
p

and divergence when |z — xg| > %. O

The interval of convergence of the power series is the set of all = such that the series converges. The value
xo is always in the interval of convergence. If R is positive, then (xg — R, xo + R) is a subset of the interval
of convergence. If R is finite and non-zero, then the end points g + R may be included in the interval of
convergence. For example, consider the power series

o0 4\k+1
27( 1]2 (z — 1)
k=1

The radius of convergence of this series is R = 1 and its interval of convergence is (0, 2].



2 Pointwise vs Uniform Convergence

Let (fn)22, be a sequence of functions defined on a subset S C R. This sequence converges pointwise on S
if for each x € S, the sequence of numbers (f,(z))%2, converges. In this case, we define f: S — R by

fo) = lim fu().

For example, consider the sequence of functions defined by f,(z) = z™ on [0,1]. Then, for z € [0,1),
lim,, 00 ™ = 0; for x = 1, we have lim,,, o fn(1) = 1. Thus, the sequence f,(z) = 2™ converges pointwise
on [0, 1]; furthermore, the limit function is given by

fx) =

0 ifo<<z<l,
1 ifz=1.

Note that each f,(z) is continuous on [0, 1]; however, f(z) is not continuous at x = 1. In terms of limit
operations, we have

Jim (i ) = Jim ©) =0
whereas

lim (lim fn(x)> = lim (1) =1.
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Let (fn)22, be a sequence of functions defined on a subset S C R. This sequence converges uniformly
on S to a function f: S — R if for all € € Ry, there is a N € N such that

nzN=[fu(z) - f2)] <

for all x € S. Tt is important to clarify the distinction between pointwise and uniform convergence. With
pointwise convergence, for each x € S, there is a f(x) € R such that for all € € Ry, there is a N € N such
that

n>N=|fulx) - f(z)| <e

In this case, the IV may depend on both x and e. With uniform convergence, there exists a function f: § - R
such that for all € € Ry, there is a N € N such that

n>N=|fo(r) = f2)] <€

for all x € S. In this case, the N only depends on e.
To illustrate the difference between pointwise and uniform convergence, consider the sequence of functions
defined by f,,(z) = 2™ on [0, 1]. We have seen that this sequence converges pointwise to the function f: S — R

defined by
0 ifo<z<l,
fle) = {1 it =1,
However, if we fix ¢ = 1/2, then for all n € N
27 <z < 1= fulz) >1/2.
Therefore, for all n € N| there is an = € [0,1) such that
[fn(z) = f(@)] = fulz) 2 1/2 =€

Thus, this sequence does not converge uniformly.
Now, let ¢ € (0,1). Then, for any € € R+, there is a N € N such that

tN < e
So, for all n > N, t™ < €. Therefore, for all n > N,
|[fr(z) = 0] =2" <t" <,

for all z € [0,¢]. Thus, the sequence f,(x) = x™ converges uniformly to f(z) =0 on [0, ¢].



3 Applications of Uniform Convergence

Theorem 3.1. Let (f,)22, be a sequence of continuous functions defined on a set S C R that converges
uniformly to f: S — R. Then, f is continuous on S.

Theorem 3.2. Let (f,)22, be a sequence of Riemann integrable functions defined on the interval [a,b] that
converges uniformly to f: [a,b] — R. Then, f is Riemann integrable and

b b
/f(x)dx: lim fn(x)dz.

n—o0 a

Theorem 3.3. Let (f,)22, be a sequence of differentiable functions defined on the interval [a,b] that con-
verges to f: [a,b] — R. If (f!) converges uniformly on [a,b], then [ is differentiable and

f'(z) = lim f; (x),

n—oo

for all x € [a, b].

4 Uniform Convergence of Power Series

Theorem 4.1. Suppose the power series Zi":o ar(x — xo)k has radius of convergence R, where 0 < R < oo.
Let fo(z) = 1_gan(z — 79)¥ and 0 < K < R. Then, f,(z) converges uniformly on [zo — K,z¢ + K].

Theorem 4.2. Suppose the power series 220:0 ag(x —x0)* has radius of convergence R, where 0 < R < oo.
Let fn(z) = > p_oax(z — zo)*. If the power series converges at xo + R, then f,(z) converges uniformly on
[x0, zo+ R]. Similarly, if the power seres converges at xo— R, then f,(x) converges uniformly on [xo— R, o).
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