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1 Darboux Integrals

Let f : [a, b] → R be bounded. Then, there exists m,M ∈ R such that

m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤ M(b− a),

for any partition P of [a, b]. Therefore, the upper and lower Darboux sums for f form a bounded set, which
guarantees the existence of the upper and lower Darboux integrals. In particular, the upper Darboux integral
is defined by

U(f) = inf{U(f, P ) : P is a partition of [a, b]}

and the lower Darboux integral is defined by

L(f) = sup{L(f, P ) : P is a partition of [a, b]}

The following lemma shows that the lower Darboux integral is always bounded above by the upper
Darboux integral.

Lemma 1.1. Suppose that f : [a, b] → R is bounded. Then, L(f) ≤ U(f).

Proof. Define A = {L(f, P ) : P is a partition of [a, b]} and B = {U(f, P ) : P is a partition of [a, b]}. For the
sake of contradiction, suppose that sup(A) > inf(B). Define ϵ = (sup(A)− inf(B))/2. Then,

inf(B) + ϵ =
sup(A) + inf(B)

2
<

sup(A) + sup(A)

2
= sup(A)

Since ϵ > 0, inf(B) + ϵ is not a lower bound on B. Therefore, there exists a partition Q of [a, b] such that

inf(B) ≤ U(f,Q) < inf(B) + ϵ < sup(A).

Since inf(B) + ϵ is not a upper bound on A, there exists a partition P of [a, b] such that

inf(B) ≤ U(f,Q) < inf(B) + ϵ < L(f, P ) ≤ sup(A).

However, this implies that
U(f,Q) < L(f, P ),

which contradicts Corollary 2.2 (Darboux Sums Notes). Therefore, sup(A) ≤ inf(B).

2 Riemann Integrals

If L(f) = U(f), then we say that f is Riemann integrable. In this case, we denote the Riemann integral by∫ b

a

f(x)dx = L(f) = U(f).

The following theorem gives a necessary and sufficient condition for when a bounded function is Riemann
integrable.
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Theorem 2.1. Suppose that f : [a, b] → R is bounded. Then, f is Riemann integrable if and only if for all
ϵ ∈ R>0 there exists a partition P of [a, b] such that U(f, P )− L(f, P ) < ϵ.

Proof. Suppose that f is Riemann integrable. Let ϵ ∈ R>0. Then, there exists a partition P of [a, b] such
that

L(f, P ) > L(f)− ϵ

2
.

Similarly, there exists a partition Q of [a, b] such that

U(f,Q) < U(f) +
ϵ

2
.

Since P ∪Q is refinement of both P and Q, Theorem 2.1 (Darboux Sums Notes) implies that

L(f)− ϵ

2
< L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q) < U(f) +

ϵ

2
.

Therefore,

U(f, P ∪Q)− L(f, P ∪Q) <
(
U(f) +

ϵ

2

)
−

(
L(f)− ϵ

2

)
= (U(f)− L(f)) + ϵ = ϵ.

Conversely, suppose that for all ϵ ∈ R>0 there exists a partition P of [a, b] such that U(f, P ) < L(f, P ) + ϵ.
Then,

U(f) ≤ U(f, P ) < L(f, P ) + ϵ ≤ L(f) + ϵ.

Therefore, U(f) ≤ L(f). By Lemma 1.1, L(f) ≤ U(f). Thus, L(f) = U(f) and it follows that f is Riemann
integrable.

As an example, define f : [0, 1] → R by

f(x) =

{
1 if x ∈ Q,

0 if x /∈ Q.

Then, for any partition P of [0, 1], L(f, P ) = 0 and U(f, P ) = 1. Therefore, Theorem 2.1 states that f is
not Riemann integrable.

As another example, define f : [0, 1] → R by f(x) = x. For n ∈ N, let P = {0, 1/n, 2/n, . . . , 1} be a
partition of [0, 1]. Then,

U(f, P )− L(f, P ) =
n2 + n

2n2
− n2 − n

2n2
=

1

n
.

For each ϵ > 0, there exists a n ∈ N such that 1
n < ϵ. Therefore, Theorem 2.1 states that f is Riemann

integrable.
As a final example, define f : [0, 1] → R by

f(x) =


x if 0 < x < 1,

1 if x = 0,

0 if x = 1.

For n ∈ N, let P = {0, 1/n, 2/n, . . . , 1} be a partition of [0, 1]. Then,

U(f, P )− L(f, P ) =
n2 + n− 2

2n2
+

1

n
− n2 − 3n+ 2

2n2
=

6n− 4

2n2
<

3

n
.

For each ϵ > 0, there exists a n ∈ N such that 3
n < ϵ. Therefore, Theorem 2.1 states that f is Riemann

integrable.
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