Uniform Continuity

Thomas R. Cameron

October 15, 2025

1 Uniform Continuity

Let $S \subseteq \mathbb{R}$ and $f: S \to \mathbb{R}$. We say that f is continuous on S if f is continuous at every $c \in S$, that is, for each $c \in S$ and for every $\epsilon \in \mathbb{R}_{>0}$ there is a $\delta \in \mathbb{R}_{>0}$ such that $|f(x) - f(c)| < \epsilon$ whenever $|x - c| < \delta$ and $x \in S$. It is important to note that the choice of δ may depend on both ϵ and c. If it happens that for each $\epsilon \in \mathbb{R}_{>0}$ there is a $\delta \in \mathbb{R}_{>0}$ that works for all $c \in S$, then f is said to be uniformly continuous on S. Specifically, we say that f is uniformly continuous on S if for all $\epsilon \in \mathbb{R}_{>0}$ there is a $\delta \in \mathbb{R}_{>0}$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$ and $x, y \in S$.

As an example, we will show that f(x) = 2x is uniformly continuous on \mathbb{R} . To this end, let $\epsilon \in \mathbb{R}_{>0}$ and define $\delta = \frac{\epsilon}{2}$ Then, for any $x, y \in \mathbb{R}$, we have

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| = 2|x - y| < 2\delta = \epsilon.$$

In contrast, we will show that $f(x) = x^2$ is not uniformly continuous on \mathbb{R} . To this end, let $\epsilon = 1$. Then, for any $\delta \in \mathbb{R}_{>0}$, define $x = \frac{1}{\delta}$ and $y = \frac{1}{\delta} + \frac{\delta}{2}$. So, $|x - y| < \delta$ and

$$|f(x) - f(y)| = |x^2 - y^2|$$

$$= |x + y| |x - y|$$

$$= \left(\frac{2}{\delta} + \frac{\delta}{2}\right) \left(\frac{\delta}{2}\right)$$

$$\geq \frac{2}{\delta} \frac{\delta}{2} = 1.$$

In the previous example, |x-y| is made small while |x+y| is made large. This can't happend on bounded domains. For example, $f(x) = x^2$ is uniformly continuous on [0,1]. Let $\epsilon \in \mathbb{R}_{>0}$ and define $\delta = \frac{\epsilon}{2}$. Then, for any $x, y \in [0,1]$, we have

$$|x-y| < \delta \Rightarrow |x^2 - y^2| = |x+y| |x-y| \le 2 |x-y| < 2\delta = \epsilon.$$

In the previous example, we had a continuous function $f(x) = x^2$ over a compact domain [0, 1]. The following theorem shows that this is always sufficient for uniform continuity.

Theorem 1.1. Suppose that $S \subseteq \mathbb{R}$ is compact and $f: S \to \mathbb{R}$ is continuous. Then, f is uniformly continuous on S.

Proof. Let $\epsilon \in \mathbb{R}_{>0}$. For each $c \in S$, there is a $\delta_c \in \mathbb{R}_{>0}$ such that $|f(x) - f(c)| < \frac{\epsilon}{2}$ whenever $|x - c| < \delta_c$ and $x \in S$. Note that $\mathcal{F} = \{N(c; \frac{\delta_c}{2}) : c \in S\}$ is an open cover for S. Since S is compact, there is a finite subcover of \mathcal{F} ; that is, there is a $k \in \mathbb{N}$ such that

$$S \subseteq \bigcup_{i=1}^k N(c_i; \frac{\delta_{c_i}}{2}).$$

Now, define $\delta = \min \left\{ \frac{\delta_{c_i}}{2} : 1 \le i \le k \right\}$. Then, let $x, y \in S$ such that $|x - y| < \delta$. Since $x \in S$, there is an $i \in \{1, \ldots, k\}$ such that $x \in N(c_i; \frac{\delta_{c_i}}{2})$. Thus, $|f(x) - f(c_i)| < \frac{\epsilon}{2}$. Furthermore, since $|x - y| < \delta \le \frac{\delta_{c_i}}{2}$, we have

$$|y - c_i| \le |y - x| + |x - c_i| < \delta_{c_i}$$
.

So, $|f(y) - f(c_i)| < \frac{\epsilon}{2}$. Therefore,

$$|f(x) - f(y)| \le |f(x) - f(c_i)| + |f(c_i) - f(y)| < \epsilon.$$

Theorem 1.1 implies that over compact domains, the properties of continuous functions apply to uniformly continuous functions. For instance, we have the following corollary.

Corollary 1.2. Let $S \subseteq \mathbb{R}$ be compact. Also, let $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ be continuous. Then, f and g are uniformly continuous on S. Moreover,

- (a) f + g is uniformly continuous on S.
- (b) kf is uniformly continuous on S, for all $k \in \mathbb{R}$.
- (c) $f \cdot g$ is uniformly continuous on S.
- (d) f/g is uniformly continuous on S, provided g is non-zero on S.

The following example demonstrates what can happen for continuous functions over non-compact domains. In particular, we claim that f(x)=1/x is not uniformly continuous on (0,1). To this end, let $\epsilon=1$. Then, for any $\delta\in\mathbb{R}_{>0}$ let $x,y\in(0,1)$ such that $x<\delta$ and y=x/2. Note that since $x,y\in(0,1)$ we can assume that $\delta<1$. Furthermore, $|x-y|=\frac{x}{2}<\frac{\delta}{2}<\delta$. However,

$$\left|\frac{1}{x} - \frac{1}{y}\right| = \frac{1}{x} > \frac{1}{\delta} > 1.$$