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1 Uniform Continuity

Let S ⊆ R and f : S → R. We say that f is continuous on S if f is continuous at every c ∈ S, that is,
for each c ∈ S and for every ϵ ∈ R>0 there is a δ ∈ R>0 such that |f(x)− f(c)| < ϵ whenever |x− c| < δ
and x ∈ S. It is important to note that the choice of δ may depend on both ϵ and c. If it happens that
for each ϵ ∈ R>0 there is a δ ∈ R>0 that works for all c ∈ S, then f is said to be uniformly continuous on
S. Specifically, we say that f is uniformly continuous on S if for all ϵ ∈ R>0 there is a δ ∈ R>0 such that
|f(x)− f(y)| < ϵ whenever |x− y| < δ and x, y ∈ S.

As an example, we will show that f(x) = 2x is uniformly continuous on R. To this end, let ϵ ∈ R>0 and
define δ = ϵ

2 Then, for any x, y ∈ R, we have

|x− y| < δ ⇒ |f(x)− f(y)| = 2 |x− y| < 2δ = ϵ.

In contrast, we will show that f(x) = x2 is not uniformly continuous on R. To this end, let ϵ = 1. Then, for
any δ ∈ R>0, define x = 1

δ and y = 1
δ + δ

2 . So, |x− y| < δ and

|f(x)− f(y)| =
∣∣x2 − y2

∣∣
= |x+ y| |x− y|

=

(
2

δ
+

δ

2

)(
δ

2

)
≥ 2

δ

δ

2
= 1.

In the previous example, |x− y| is made small while |x+ y| is made large. This can’t happend on bounded
domains. For example, f(x) = x2 is uniformly continuous on [0, 1]. Let ϵ ∈ R>0 and define δ = ϵ

2 . Then, for
any x, y ∈ [0, 1], we have

|x− y| < δ ⇒
∣∣x2 − y2

∣∣ = |x+ y| |x− y| ≤ 2 |x− y| < 2δ = ϵ.

In the previous example, we had a continuous function f(x) = x2 over a compact domain [0, 1]. The
following theorem shows that this is always sufficient for uniform continuity.

Theorem 1.1. Suppose that S ⊆ R is compact and f : S → R is continuous. Then, f is uniformly continuous
on S.

Proof. Let ϵ ∈ R>0. For each c ∈ S, there is a δc ∈ R>0 such that |f(x)− f(c)| < ϵ
2 whenever |x− c| < δc

and x ∈ S. Note that F =
{
N(c; δc

2 ) : c ∈ S
}
is an open cover for S. Since S is compact, there is a finite

subcover of F ; that is, there is a k ∈ N such that

S ⊆
k⋃

i=1

N(ci;
δci
2
).

Now, define δ = min
{

δci
2 : 1 ≤ i ≤ k

}
. Then, let x, y ∈ S such that |x− y| < δ. Since x ∈ S, there is an

i ∈ {1, . . . , k} such that x ∈ N(ci;
δci
2 ). Thus, |f(x)− f(ci)| < ϵ

2 . Furthermore, since |x− y| < δ ≤ δci
2 , we

have
|y − ci| ≤ |y − x|+ |x− ci| < δci .
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So, |f(y)− f(ci)| < ϵ
2 . Therefore,

|f(x)− f(y)| ≤ |f(x)− f(ci)|+ |f(ci)− f(y)| < ϵ.

Theorem 1.1 implies that over compact domains, the properties of continuous functions apply to uniformly
continuous functions. For instance, we have the following corollary.

Corollary 1.2. Let S ⊆ R be compact. Also, let f : S → R and g : S → R be continuous. Then, f and g
are uniformly continuous on S. Moreover,

(a) f + g is uniformly continuous on S.

(b) kf is uniformly continuous on S, for all k ∈ R.

(c) f · g is uniformly continuous on S.

(d) f/g is uniformly continuous on S, provided g is non-zero on S.

The following example demonstrates what can happen for continuous functions over non-compact do-
mains. In particular, we claim that f(x) = 1/x is not uniformly continuous on (0, 1). To this end, let ϵ = 1.
Then, for any δ ∈ R>0 let x, y ∈ (0, 1) such that x < δ and y = x/2. Note that since x, y ∈ (0, 1) we can
assume that δ < 1. Furthermore, |x− y| = x

2 < δ
2 < δ. However,∣∣∣∣ 1x − 1

y

∣∣∣∣ = 1

x
>

1

δ
> 1.
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