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1 Carathéodory’s Theorem

Let X ⊆ Rn. The convex hull of X, denoted convHull (X), is the smallest convex
set that contains X. The convex span of X, denoted convSpan (X), is the set of
all convex combinations of finitely many points from X. Recall that we proved the
following proposition in the previous lecture.

Proposition 1. Let X ⊆ Rn. Then, convHull (X) ⊆ convSpan (X).

In this lecture, we use Carathéodory’s theorem to prove that convSpan (X) ⊆
convHull (X). To this end, for each k ∈ N, define convSpank (X) as the set of all con-
vex combinations of k points from X. Note that convSpan1 (X) = X, convSpan2 (X)
is the set of all line segments between two points of X,

convSpan (X) =
∞⋃
k=1

convSpank (X) .

The following proposition shows that convSpank (X) is a subset of convHull (X) for
each k ∈ N.

Proposition 2. Let X ⊆ Rn and let S denote any convex set that contains X. Then,
convSpank (X) ⊆ S for all k ∈ N.

Proof. We proceed via induction on k. The base case, when k = 1, is clear. Suppose
that convSpank (X) ⊆ S for some k ≥ 1, and let x ∈ convSpank+1 (X). Then, there
exists x1, . . . ,xk+1 ∈ X and c1, . . . , ck+1 ∈ R such that

x = c1x1 + · · ·+ ck+1xk+1,
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where ci ≥ 0, for all i ∈ {1, . . . , k+1}, and
∑k+1

i=1 ci = 1. We can assume that c1 < 1;
otherwise, x = x1 which implies that x ∈ X ⊆ S. Now, we can rewrite x as follows

x = c1x1 + (1− c1)

(
c2

1− c1
x2 + · · ·+ ck+1

1− c1
xk+1

)
:= c1x1 + (1− c1)γ.

Note that ci
1−c1

≥ 0 for all i ∈ {2, . . . , k + 1}. Moreover,

k+1∑
i=2

ci
1− c1

=
1

1− c1

k+1∑
i=2

ci =
1− c1
1− c1

= 1.

Thus, γ ∈ convSpank (X), so the induction hypothesis gives γ ∈ S. Therefore, x lies
along a line segment between two points in S. Since S is a convex set, it follows that
x ∈ S.

In 1911, Constantin Carathéodory proved that every point on the convex span
of X can be written as a convex combination of at most n + 1 points from X. We
prove this result in Theorem 3. Moreover, Theorem 3 combined with Propositions 1
and 2 implies that convSpan (X) = convHull (X).

Theorem 3 (Constantin Carathéodory). Let X ⊆ Rn. Then,

convSpan (X) = convSpann+1 (X) .

Proof. By definition, convSpann+1 (X) ⊆ convSpan (X). Hence, we only need to
show the reverse containment. To this end, let γ ∈ convSpan (X). Then,

γ = t1x1 + · · ·+ tkxk,

where k ∈ N, x1, . . . ,xk ∈ X, tj ≥ 0 for each j ∈ {1, . . . , k}, and
∑k

j=1 tj = 1.
We may assume that k ≥ n + 1; otherwise, γ ∈ convSpann+1 (X) and we are

done. Now, denote by xij the ith entry of xj. Then the coefficients tj correspond to
a feasible solution of the following LP.

maximize z = t1 + · · ·+ tk

subject to t1xi1 + · · ·+ tkxik = γi, 1 ≤ i ≤ n,

t1 + · · ·+ tk = 1,

tj ≥ 0, 1 ≤ j ≤ k
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Note that, using row operations, we can reduce the above LP to a dictionary form,
where each constraint corresponds to at most one basic variable tj. More importantly,
since the above LP is feasible its corresponding tableau must have a feasible basic
solution. Since there are at most (n + 1) basic variables, it follows that any basic
solution has at most (n+1) non-zero entries. Therefore, γ can be written as a convex
combination of at most (n+ 1) points from X.

1.1 Class Exercises

Let X = {x1,x2,x3,x4}, where

x1 =

[
0
0

]
, x2 =

[
1
2

]
, x3 =

[
3
2

]
,x4 =

[
2
0

]
.

Also, let γ =
∑4

j=1
1
4
xi.

I. Use Desmos to plot the set X and γ.

II. On the same Desmos plot, plot the line segment from x2 to x4. Use this plot
to determine γ as a convex combination of x2 and x4.

III. Use the proof technique from Theorem 3 to determine γ as a convex combination
of at most three points from X.
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