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1 Extreme Points

We have seen that the feasible basic solutions in the simplex algorithm correspond to
the extreme points of the feasible region. The following result proves this observation
in general.

Theorem 1. Let S ⊂ Rn denote the feasible region of a LP in standard form. There
is a bijection between the extreme points of S and the feasible basic solutions of the
LP.

Proof. Let x = [xp|xs] denote a feasible basic solution, where xp denotes the problem
variables of the LP and xs denotes the slack variables introduced in the simplex
algorithm. Since x is feasible, it follows that all variables are non-negative and xp

satisfies all constraints of the LP; hence, xp is in S. Furthermore, xp must be an
extreme point of S. Otherwise, at least one variable in xp has a non-zero value that
can be increased and remain feasible. This increase in a basic variable corresponds
to a non-basic variable that can be decreased, which contradicts x being a basic
solution.

Let xp denote an extreme point of S. Then, xp is the intersection of n hyperplanes
corresponding to the constraints of the LP, including the non-negative constraints,
where the inequalities are replaced by equalities. Each hyperplane corresponds to
a non-basic variable that has been set to zero. The remaining basic variables have
a value that can be determined from xp. Hence, xp corresponds to a feasible basic
solution.
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2 Convexity

A region S ⊂ Rn is convex if for any u,v ∈ S the line segment

lt = tu+ (1− t)v, 0 ≤ t ≤ 1,

is in S for all t ∈ [0, 1]. The following result shows that every half-space is convex.

Proposition 2. Let a ∈ Rn and b ∈ R. Then, the half-space

H =
{
x ∈ Rn : aTx ≤ b

}
is convex.

Proof. Let u,v ∈ H and define the line segment

lt = tu+ (1− t)v, 0 ≤ t ≤ 1.

Note that

aT lt = taTu+ (1− t)aTv

≤ tb+ (1− t)b = b,

for all t ∈ [0, 1].

Next, we show that the intersection of any two convex sets is a convex set.

Proposition 3. Let S, T ⊂ Rn denote two convex sets. Then, R = S∩T is a convex
set.

Proof. Let u,v ∈ R and define the line segment

lt = tu+ (1− t)v, 0 ≤ t ≤ 1.

Note that u,v ∈ S and u,v ∈ T . Since S and T are both convex sets, it follows that
lt ∈ S and lt ∈ T for all t ∈ [0, 1]. Therefore, lt ∈ R for all t ∈ [0, 1].

It is worth noting that the entire intersection is required to maintain convexity,
see Figure 1. The previous two results imply that every polyhedron, intersection
of finitely many half-spaces, is a convex set. We state this result formally in the
following theorem.

Theorem 4. Let P be a polyhedron. Then, P is a convex set.
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Figure 1: A convex set (left) versus a non-convex set formed by removing an interior
region (right).

For a set of points X = {x1, . . . ,xk} ⊂ Rn and a collection of real numbers
c1, . . . , ck we call the sum

∑k
i=1 cixi a linear combination. If c1 + · · · + ck = 1, then

we call the sum an affine combination. If ci ≥ 0 for all i ∈ {1, . . . , k}, then we call
the sum a conic combination. If the sum is both affine and conic, then we say it is
a convex combination.

Proposition 5. Let X = {x1, . . . ,xk} ⊂ Rn. Suppose that α and β are convex
combinations of X and that γ is a convex combination of α and β. Then, γ is a
convex combination of X.

Proof. Note that

α = a1x1 + · · ·+ akxk, ai ≥ 0,
k∑

i=1

ai = 1,

β = b1x1 + · · ·+ bkxk, bi ≥ 0,
k∑

i=1

bi = 1,

γ = tα+ (1− t)β, t ∈ [0, 1].

Therefore,
γ = (ta1 + (1− t)b1)x1 + · · ·+ (tak + (1− t)bk)xk,

where (tai + (1− t)bi) ≥ 0 and

k∑
i=1

(tai + (1− t)bi) = t
k∑

i=1

ai + (1− t)
k∑

i=1

bi

= t(1) + (1− t)(1) = 1.

3



Let X ⊆ Rn. The convex hull of X, denoted convHull (X), is the smallest convex
set that contains X. The convex span of X, denoted convSpan (X), is the set of
all convex combinations of finitely many points from X. Proposition 5 implies that
convSpan (X) is a convex set; hence, we have the following result.

Proposition 6. Let X ⊆ Rn. Then, convHull (X) ⊆ convSpan (X).

2.1 Class Exercises

Recall the linear program in (1a)–(1e), with feasible region plotted in Figure 2.

maximize z = x1 + x2 (1a)

subject to 3x1 + 5x2 ≤ 90, (1b)

9x1 + 5x2 ≤ 180, (1c)

x2 ≤ 15, (1d)

xi ≥ 0, ∀i ∈ {1, 2} (1e)

(0, 0)

(0, 15) (5, 15)

(15, 9)

(20, 0) x1

x2

Figure 2: Feasible region for example LP in (1a)–(1e), with optimal solution in red.

I. The point (10, 0) is feasible. What is the corresponding dictionary solution?
How do you know this is not a basic solution?

II. The point (10, 0) is feasible but not an extreme point. What is the only hyper-
plane that corresponds to this point?

III. The point (20, 0) is feasible and an extreme point. What are the two hyperplanes
that correspond to this point?
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