Graph Theory

Homework 5

Due: March 18, 2023

1 Problems

I. Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be isomorphic graphs. Prove that there is a permutation matrix P such that for each $A \in \mathcal{S}(G), P A P^{-1} \in \mathcal{S}\left(G^{\prime}\right)$.
II. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Prove that A has n real eigenvalues, counting multiplicities.
III. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Prove that eigenvectors corresponding to distinct eigenvalues are orthogonal.
IV. Prove that the Laplacian matrix associated with any graph $G=(V, E)$ is an M-matrix.
V. Let L denote the Laplacian matrix associated with a graph $G=(V, E)$ of order $n \geq 1$. Prove that the eigenvalues of L are contained in the interval $[0, n]$. Explain why no proper sub-interval of $[0, n]$ will work in general.

