Graph Theory

Thomas R. Cameron

January 12, 2024

1 Key Topics

Today we introduce the notion of a subgraph. For further reading, see [1, Section 1.2] and [2, Section 1.1]. Let G and H be graphs. We say that H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Furthermore, we say that H is a spanning subgraph if $V(H)=V(G)$. For example, consider the graphs shown in Figure 1 . the cycle graph is a spanning subgraph of the complete graph.

Figure 1: Cycle graph (left) and complete graph (right) of order 5

1.1 Induced Subgraphs

Let $G=(V, E)$ be a graph. The subgraph induced by $E^{\prime} \subseteq E$ is defined by $H=\left(V, E^{\prime}\right)$. Note that the cycle graph in Figure 1 is induced by the complete graph with edge set

$$
E^{\prime}=\{\{1,3\},\{1,4\},\{2,4\},\{2,5\},\{3,5\}\}
$$

The subgraph induced by $V^{\prime} \subseteq V$ is defined by $H=\left(V^{\prime}, E^{\prime}\right)$, where

$$
E^{\prime}=\left\{\{u, v\}: u, v \in V^{\prime} \ni\{u, v\} \in E\right\}
$$

For example, consider the graph in Figure 2. The graph induced by $V^{\prime}=\{1,2,4,5\}$ is the complete graph of order 4.

Figure 2: A graph of order 6
Not all subgraphs are induced by a subset of vertices or edges. For example, the graph in Figure 3 is a subgraph of the graph in Figure 2 that is not induced by a subset of vertices or edges.

Figure 3: A subgraph not induced by a subset of vertices or edges

1.2 Cliques and Independent Sets

Let $G=(V, E)$ be a graph. A clique is a subset of vertices $V^{\prime} \subseteq V$ such that the induced subgraph is a complete graph. For example, the subset of vertices $V^{\prime}=\{1,2,4,5\}$ is a clique of the graph in Figure 2, A maximum clique is a clique such that there is no clique with more vertices. Moreover, the clique number of G, denoted $\omega(G)$, is the cardinality of a maximum clique. The clique number of the graph in Figure 2 is 4 .

An independent set is a subset of vertices $V^{\prime} \subseteq V$ such that the induced subgraph is a empty graph. For example, the subset of vertices $V^{\prime}=\{5,6\}$ is a independent set of the graph in Figure 2. A maximum independent set is a independent set such that there is no independent set with more vertices. Moreover, the independence number of G, denoted $\alpha(G)$ is the cardinality of a maximum independent set.

2 Exercises

For each family of graphs, find the clique number and the independence number.
a. The complete graph of order n
b. The cycle graph of order n
c. The star graph of order n
d. The path graph of order n

References

[1] D. Joyner, M. V. Nguyen, and D. Phillips, Algorithmic Graph Theory and Sage, 2013.
[2] K. Ruohonen, Graph Theory, 1st ed., 2013.

