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1 Key Topics

Today, we continue our discussion of connected graphs and connected components. For further reading,
see [1, Section 1.2.1] and [2, Section 1.2].

Recall that a walk is a list of vertices (v0, v1, . . . , vl) such that vi ∼ vi+1 for i = 0, 1, . . . , l − 1. We often
refer to this list of vertices as a walk from v0 to vl. A trail is a walk in which no edge is repeated and a path
is a walk in which no vertex is repected, except possibly the initial and terminal vertices. Finally, recall that
every path of length l ≥ 3 is a trail.

1.1 Connected Relation

Let G = (V,E) and let u, v ∈ V . We say that u is connected to v if there exists a path from u to v, we
reference such a path as a (u,v)-path. In what follows, we show that connected to is an equivalence relation.
First, we need the following lemma which states that if there is a walk from u to v, then there exists a path
from u to v.

Lemma 1.1. Let G = (V,E) and let u, v ∈ V . If there exists a (u,v)-walk, then there exists a (u,v)-path.

Proof. Suppose there exists a (u,v)-walk and define

S = {n ∈ N : there exists a (u,v)-walk of length n} .

Since S ⊆ N is non-empty, the well-ordering principal implies that there is a minimum element of S, i.e.,
there exists an m ∈ S such that m ≤ k for all k ∈ S.

Now, let W = (v0, v1, . . . , vm) denote a (u,v)-walk of length m. We claim that W is a path. Indeed, if
there were a duplicate vertex x in W , then we could remove the vertices between the repeated occurrences of
W and attain a (u,v)-walk of length less than m, which contradicts m being the minimum element of S.

Example 1.2. To see why Lemma 1.1 is necessary in the proof of Theorem 1.2, consider the graph below
(right) and the concatenation of two paths (left).

W1 = (1, 2, 3, 4, 5)

W2 = (5, 4, 3, 6, 7)

W1 +W2 = (1, 2, 3, 4, 5, 4, 3, 6, 7)
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Theorem 1.3. Let G = (V,E). The connected to relation is an equivalence relation on V .

Proof. To show that connected to is an equivalence relation, we must show that it is reflexive, symmetric,
and transitive. To this end, let u, v, w ∈ V .

For reflexive, note that (u) is a path from u to u; hence, u is connected to itself.
For symmetric, suppose that u is connected to v. Then, there is a path W = (v0, v1, . . . , vl) such that

u = v0 and v = vl. Therefore, the reversal W−1 = (vl, vl−1, . . . , v1, v0) is a path from v to u; hence, v is
connected to u.

For transitive, suppose that u is connected to v and v is connected to w. Then, there exists paths
W1 = (v0, v1, . . . , vl) and W2 = (w0, w1, . . . , wk) such that u = v0, v = vl = w0, and w = wk. Therefore, the
concatenation W = W1 +W2 is a walk from u to w; hence, by Lemma 1.1, there is a path from u to w and
it follows that u is connected to w.

1.2 Connected Components

Every equivalence relation comes with a partition: the equivalence classes of the relation. In the case of the
connected to relation, the equivalence classes correspond to disjoint subsets of vertices, where u, v ∈ V are
in the same class if and only if there is a (u,v)-path.

Let G = (V,E) and let V1, . . . , Vk denote the equivalence classes under the connected to relation. Then,
the connected components of G are the induced subgraphs G[Vi], for i = 1, . . . , k.

Example 1.4. Consider the graph below (right) and the adjacency matrix (left) Note how the equivalence
classes (V1 = {1, 2, 3, 4}, V2 = {5, 6}, and V3 = {7}) partition the graph into connected components, which
can be seen in the adjacency matrix via diagonal block matrices.

A =



0 1 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
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2 Exercises

Consider the graph below (right) and the adjacency matrix (left). Find an isomorphism between this graph
and the graph in Example 1.4. What impact does this isomorphism have on the adjacency matrix?

A =



0 0 0 1 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
1 0 0 0 1 0 0
1 0 0 1 0 1 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
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