Graph Theory

Thomas R. Cameron

January 24, 2024

1 Key Topics

Today, we introduce the concept of distance and diameter in graphs. For further reading, see [1, Section 5.1]. Recall that a walk from u to v is a list of vertices $\left(v_{0}, v_{1}, \ldots, v_{l}\right)$ such that $v_{i} \sim v_{i+1}$ for $i=0,1, \ldots, l-1$ and $u=v_{0}$ and $v=v_{l}$. We denote such a walk as a (u, v)-walk. If the walk is a trail, then we reference it as a (u, v)-trail. If the walk is a path, then we reference it as a (u,v)-path.

1.1 Distance

Let $G=(V, E)$ and let $u, v \in V$. The distance from u to v is defined by

$$
d(u, v)= \begin{cases}\min \{l: \text { there is a }(\mathrm{u}, \mathrm{v}) \text {-path of length } l\} & u \text { is connected to } v \\ \infty & u \text { is not conntcted to } v\end{cases}
$$

The distance function is an example of a metric, similar to the absolute value function, as the following proposition shows.

Proposition 1.1. Let $G=(V, E)$. Then, the distance function satisfies the following properties:
a. $d(u, v) \geq 0$ for all $u, v \in V$ and $d(u, v)=0$ if and only if $u=v$,
b. $d(u, v)=d(v, u)$ for all $u, v \in V$,
c. $d(u, v) \leq d(u, w)+d(w, v)$ for all u, v, w.

Proof. a. It is immediately clear that the distance function is non-negative. Furthermore, $d(u, v)=0$ if and only if there exists a path of length 0 from u to v, which is true if and only if $u=v$.
b. If u is not connected to v, then $d(u, v)=d(v, u)=\infty$. Now, suppose that u is connected to v and let $W=\left(v_{0}, v_{1}, \ldots, v_{m}\right)$ denote a (u, v)-path of minimum length. Then, the reversal W^{-1} is a ($\left.\mathrm{v}, \mathrm{u}\right)$-path of minimum length. Indeed, if there exists a (v, u) path of length less than m, then its reversal will be a (u, v) path of length less than m , which is a contradiction. Hence, $d(u, v)=d(v, u)=m$.
c. Proof saved for Homework 2.

1.2 Diameter

Let $G=(V, E)$ denote a connected graph. Given $u \in V$, we define the eccentricity of u by

$$
\operatorname{ecc}(u)=\max \{d(u, v): v \in V\}
$$

Note that since G is connected the eccentricity of every vertex is finite. Furthermore, the radius and diameter of a graph are defined as the minimum and maximum eccentricity, respectively:

$$
\begin{aligned}
\operatorname{rad}(G) & =\min \{\operatorname{ecc}(u): u \in V\} \\
\operatorname{diam}(G) & =\max \{\operatorname{ecc}(u): u \in V\}
\end{aligned}
$$

The center of the graph is the set of vertices u such that ecc $(u)=\operatorname{rad}(G)$; the periphery of the graph is the set of vertices u such that ecc $(u)=\operatorname{diam}(G)$.

For example, the graph in Figure 1 has radius $\operatorname{rad}(G)=3$, which is attained by vertex 5 . In addition, the graph has diameter $\operatorname{diam}(G)=6$, which is attained by vertices 2 and 8 . Therefore, the center of the graph is $\{5\}$ and the periphery of the graph is $\{2,8\}$.

Figure 1: Connected graph with $\operatorname{rad}(G)=3$ and $\operatorname{diam}(G)=6$

Theorem 1.2. Let $G=(V, E)$ be a connected graph. Then,

$$
\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)
$$

Proof. By definition, $\operatorname{rad}(G) \leq \operatorname{diam}(G)$, so we only need to prove the upper bound. Let $u, v \in V$ such that $d(u, v)=\operatorname{diam}(G)$ and let c denote a vertex in the center of G. Then,

$$
\operatorname{diam}(G)=d(u, v) \leq d(u, c)+d(c, v) \leq 2 \operatorname{ecc}(c)=2 \operatorname{rad}(G)
$$

Theorem 1.3. Let $G=(V, E)$. Then, $V(G)$ is the center of some graph.
Proof. We construct a graph H from G as follows

$$
\begin{aligned}
& V(H)=V(G) \cup\{w, x, y, z\} \\
& E(H)=E(G) \cup\{w x, y z\} \cup\{x u: u \in V(G)\} \cup\{y u: u \in V(G)\}
\end{aligned}
$$

Now, $\operatorname{ecc}(w)=\operatorname{ecc}(z)=4$, ecc $(y)=\operatorname{ecc}(x)=3$, and for any $v \in V(G)$, ecc $(v)=2$. Hence, $V(G)$ is the center of H.

2 Exercises

Complete the following table

Graph Family	Radius	Diameter
K_{n}		
C_{n}		
S_{n}		
P_{n}		

References

[1] K. Ruohonen, Graph Theory, 1st ed., 2013.

