Graph Theory

Thomas R. Cameron

January 24, 2024

1 Key Topics

Today, we introduce the concept of distance and diameter in graphs. For further reading, see [1, Section 5.1]. Recall that a walk from u to v is a list of vertices (v_0, v_1, \ldots, v_l) such that $v_i \sim v_{i+1}$ for $i = 0, 1, \ldots, l-1$ and $u = v_0$ and $v = v_l$. We denote such a walk as a (u,v)-walk. If the walk is a trail, then we reference it as a (u,v)-trail. If the walk is a path, then we reference it as a (u,v)-path.

1.1 Distance

Let G = (V, E) and let $u, v \in V$. The *distance* from u to v is defined by

$$d(u, v) = \begin{cases} \min \{l: \text{there is a } (u, v)\text{-path of length } l\} & u \text{ is connected to } v \\ \infty & u \text{ is not conntcted to } u \end{cases}$$

The distance function is an example of a metric, similar to the absolute value function, as the following proposition shows.

Proposition 1.1. Let G = (V, E). Then, the distance function satisfies the following properties:

a. $d(u,v) \ge 0$ for all $u, v \in V$ and d(u,v) = 0 if and only if u = v,

- b. d(u, v) = d(v, u) for all $u, v \in V$,
- c. $d(u,v) \leq d(u,w) + d(w,v)$ for all u, v, w.

Proof. a. It is immediately clear that the distance function is non-negative. Furthermore, d(u, v) = 0 if and only if there exists a path of length 0 from u to v, which is true if and only if u = v.

- b. If u is not connected to v, then $d(u,v) = d(v,u) = \infty$. Now, suppose that u is connected to v and let $W = (v_0, v_1, \ldots, v_m)$ denote a (u,v)-path of minimum length. Then, the reversal W^{-1} is a (v,u)-path of minimum length. Indeed, if there exists a (v, u) path of length less than m, then its reversal will be a (u, v) path of length less than m, which is a contradiction. Hence, d(u, v) = d(v, u) = m.
- c. Proof saved for Homework 2.

1.2 Diameter

Let G = (V, E) denote a connected graph. Given $u \in V$, we define the *eccentricity* of u by

$$\operatorname{ecc}(u) = \max\left\{d(u, v) \colon v \in V\right\}.$$

Note that since G is connected the eccentricity of every vertex is finite. Furthermore, the *radius* and *diameter* of a graph are defined as the minimum and maximum eccentricity, respectively:

$$\operatorname{rad} (G) = \min \left\{ \operatorname{ecc} (u) : u \in V \right\}$$
$$\operatorname{diam} (G) = \max \left\{ \operatorname{ecc} (u) : u \in V \right\}$$

The *center* of the graph is the set of vertices u such that ecc(u) = rad(G); the *periphery* of the graph is the set of vertices u such that ecc(u) = diam(G).

For example, the graph in Figure 1 has radius rad(G) = 3, which is attained by vertex 5. In addition, the graph has diameter diam (G) = 6, which is attained by vertices 2 and 8. Therefore, the center of the graph is $\{5\}$ and the periphery of the graph is $\{2, 8\}$.

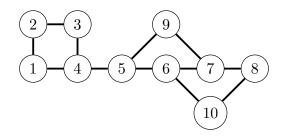


Figure 1: Connected graph with rad(G) = 3 and diam(G) = 6

Theorem 1.2. Let G = (V, E) be a connected graph. Then,

 $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$.

Proof. By definition, rad $(G) \leq \text{diam}(G)$, so we only need to prove the upper bound. Let $u, v \in V$ such that d(u, v) = diam(G) and let c denote a vertex in the center of G. Then,

$$\operatorname{diam}(G) = d(u, v) \le d(u, c) + d(c, v) \le 2 \operatorname{ecc}(c) = 2 \operatorname{rad}(G).$$

Theorem 1.3. Let G = (V, E). Then, V(G) is the center of some graph.

Proof. We construct a graph H from G as follows

$$\begin{split} V(H) &= V(G) \cup \{w, x, y, z\}, \\ E(H) &= E(G) \cup \{wx, yz\} \cup \{xu \colon u \in V(G)\} \cup \{yu \colon u \in V(G)\} \end{split}$$

Now, ecc(w) = ecc(z) = 4, ecc(y) = ecc(x) = 3, and for any $v \in V(G)$, ecc(v) = 2. Hence, V(G) is the center of H.

2 Exercises

Complete the following table

Radius	Diameter
	Radius

References

[1] K. RUOHONEN, Graph Theory, 1st ed., 2013.