Graph Theory

Thomas R. Cameron

January 26, 2024

1 Key Topics

Today we discuss graph operations, with a particular focus on the Cartesian product. For further reading, see [1, Section 1.6] and [2, Section 1.3].

1.1 Basic Graph Operations

Let $G=(V, E)$ and let $v \in V$ and $e \in E$. Then, the vertex deletion of G on v is defined by

$$
G-v=(V \backslash\{v\}, E \backslash\{e \in E: v \in e\})
$$

and the edge deletion of G on e is defined by

$$
G-e=(V, E \backslash\{e\})
$$

Both of these operations result in a subgraph of G.
Edge contraction is another graph operation that results in a minor of G. Given an edge $e=\{u, v\}$ of G, the edge contraction operation first removes e from the edge set and then merges the vertices u and v into a new vertex w, where

$$
N(w)=N(u) \backslash\{v\} \cup N(v) \backslash\{u\}
$$

For example, consider the graph and its minor in Figure 1

Figure 1: A graph and its minor
Other graph operations, take two graphs to produce a new graph. Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be simple graphs, where $V \cap V^{\prime}=\emptyset$. Then, the disjoint union of the two graphs is defined by

$$
G \cup G^{\prime}=\left(V \cup V^{\prime}, E \cup E^{\prime}\right)
$$

Furthermore, the join of the two graphs is defined by

$$
G \nabla G^{\prime}=\left(V \cup V^{\prime}, E \cup E^{\prime} \cup\left\{\left\{v, v^{\prime}\right\}: v \in V, v^{\prime} \in V^{\prime}\right\}\right)
$$

The disjoint union $P_{2} \cup C_{4}$ and the join $P_{2} \nabla C_{4}$ are shown in Figure 2,

Figure 2: Disjoint union (left) and join (right) of P_{2} and C_{4}

1.2 Cartesian Product

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be simple graphs, where $V \cap V^{\prime}=\emptyset$. Then, the Cartesian product of G and G^{\prime} is denoted by $G \square G^{\prime}$. The vertex set of $G \square G^{\prime}$ is given by the Cartesian product:

$$
V\left(G \square G^{\prime}\right)=V \times V^{\prime}
$$

and the edge set is defined as follows

$$
E\left(G \square G^{\prime}\right)=\left\{\left\{\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right\}: u=v \text { and } u^{\prime} \sim v^{\prime}, \text { or } u^{\prime}=v^{\prime} \text { and } u \sim v\right\}
$$

For example, the Cartesian product of P_{2} and C_{3} is shown in Figure

2 Exercises

The d-dimensional hypercube graph is a family of graphs that can be defined recursively:

$$
\begin{aligned}
& Q_{1}=P_{2} \\
& Q_{d}=Q_{d-1} \square P_{2}, d \geq 2
\end{aligned}
$$

a. Draw the graphs Q_{1}, Q_{2}, Q_{3}, and Q_{4}.
b. Show that the diameter of Q_{d} is equal to d.
c. Show that the chromatic number of Q_{d} is equal to 2 .

References

[1] D. Joyner, M. V. Nguyen, and D. Phillips, Algorithmic Graph Theory and Sage, 2013.
[2] K. Ruohonen, Graph Theory, 1st ed., 2013.

