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1 Key Topics

Today, we prove several properties regarding trees and their leafs, which allows us to prove further results
regarding trees using mathematical induction. For further reading, see [1, Section 2.1] and [2, Section 2.2].

Recall that a tree is a connected acyclic graph and a forest is a graph whose connected components are
trees.

1.1 Leafs

Let G = (V,E) be a simple graph and let v ∈ V . We say that v is a leaf (pendent vertex) if d(v) = 1.

Proposition 1.1. Let G = (V,E) be a tree of order at least 2. Then, G has at least two leafs.

Proof. Let l denote the length of a longest path in G and let

P = v0 ∼ v1 ∼ . . . ∼ vl

denote a path of length l.
For the sake of contradiction, suppose that v0 is not a leaf of G. Let x ∈ N(v0) \ {v1} and note that x is

not in the path P ; otherwise, we would have a cycle in G. Hence,

x ∼ v0 ∼ v1 ∼ . . . ∼ vl

is a path in G that is longer than l.
A similar argument shows that vl is a leaf of G.

Proposition 1.2. Let G = (V,E) be a tree. If v ∈ V be a leaf, then G− v is a tree.

Proof. SinceG does not contain any cycles, it follows thatG−v does not contain any cycles. Let x, y ∈ V \{v}.
There is a unique (x,y)-path in G. Since v is a leaf, it follows that v cannot be in the (x,y)-path; hence, the
(x,y) path exists in G− v.

The converse of Proposition 1.2 is also true, we save the proof for Homework 3. We can use the result
in Proposition 1.2 to construct trees of larger order from trees of smaller order. Moreover, we can use this
result to develop inductive arguments for trees.

Figure 1: All non-isomorphic trees of order n ≤ 5
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1.2 Induction on Trees

Theorem 1.3. Let G = (V,E) be a tree with order n ≥ 1. Then, |E| = n− 1.

Proof. We proceed via induction on n. The base case, n = 1, is clear from Figure 1. Now, fix n ≥ 1, and
suppose that all trees of order n have (n−1) edges. Let G = (V,E) be a tree of order (n+1). By Proposition
1.1, G has at least two leafs. Let v ∈ V be a leaf of G. Then, by Proposition 1.2, G− v is a tree of order n.
Hence, by the induction hypothesis, G− v has (n− 1) edges. Since v is a leaf of G, it follows that G has n
edges.

1.3 Spanning Trees

Let G = (V,E) be a simple graph. A spanning subgraph of G is any subgraph of G induced by E′ ⊆ E.
Moreover, a spanning tree of G is a spanning subgraph of G that is also a tree. For example, K5 has several
spanning trees as illustrated in

Figure 2: K5 and all spanning subtrees

Theorem 1.4. A graph has a spanning tree if and only if it is connected.

Proof. Let G = (V,E). Suppose that G has a spanning tree, which we denote by T . Let u, v ∈ V (G) = V (T ).
Since T is a tree we know that T is connected. Hence, there exists a (u,v)-path in T . Since T is an induced
subgraph of G, it follows that there is a (u,v)-path in G. Therefore, G is connected.

Conversely, suppose that G is connected. Let T be a connected spanning subgraph of G with the least
number of edges. We claim that T is a spanning tree. By construction, T is connected. Furthermore, every
e ∈ E(T ) is a cut edge; otherwise, T − e would be a smaller connected spanning subgraph of G. Therefore,
by Theorem 1.2 from 2/5/2024, T is a tree.

Corollary 1.5. Let G = (V,E) be a connected graph of order n ≥ 1. Then, G is a tree if and only if
|E| = n− 1.

2 Exercises

Prove the following result on trees using induction.

a. Every tree of order n ≥ 2 has chromatic number 2.

b. Every tree of order n ≥ 2 has independence number 2.
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