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1 Key Topics

Today, we complete our proof that a connected graph of order n is a tree if and only if that graph has (n−1)
edges. Then, we introduce the concept of an Eulerian trail and circuit.

Recall the following results.

Theorem 1.1. Let G = (V,E) be a tree with order n ≥ 1. Then, |E| = n− 1.

Theorem 1.2. A graph has a spanning tree if and only if it is connected.

Now, we will prove our main result regarding the size of a tree.

Corollary 1.3. Let G = (V,E) be a connected graph of order n ≥ 1. Then, G is a tree if and only if
|E| = n− 1.

Proof. The first direction follows from Theorem 1.1. For the converse, suppose that |E| = n− 1. Since G is
connected, Theorem 1.2 implies that G has a spanning tree, which we denote by T . Now, we have

|E(T )| = |V (T )| − 1 = |V (G)| − 1 = |E(G)| .

Since E(T ) ⊆ E(G), it follows that T = G; hence, G is a tree.

1.1 Eulerian Trails

Let G = (V,E) be a simple graph and let W be a trail in G; recall, a trail is a walk that does not repeat an
edge. If W uses every edge exactly once, then we say that W is an Eulerian trail If, in addition, the trail
starts and ends at the same vertex, then we say that W is an Eulerian circuit (or Eulerian tour). Finally,
if G has an Eulerian circuit, then we say that G is an Eulerian graph.

We now consider the question, which graphs are Eulerian? For example, see Figure 1.

Figure 1: Which of these graphs are Eulerian?

It is often useful to start by considering necessary conditions. For instance:
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• If G is Eulerian, then G has at most one non-trivial component.

• If G is Eulerian, then G does not contain any leafs.

• If G is Eulerian and of order n ≥ 3, then G is not a tree.

The above necessary conditions imply that when characterizing Eulerian graphs we need only consider
connected graphs; moreover, cycles will play an important role. Below is the main result.

Theorem 1.4. Let G = (V,E) be a connected graph. Then, the following statements are equivalent:

a. G is Eulerian.

b. Every vertex of G has an even degree.

c. The edges of G can be partitioned into (edge-disjoint) cycles.

Proof.

a ⇒ b Suppose that G is Eulerian and let W denote an Eulerian circuit in G. If |V | = 1, then the result is
trivial since the only vertex of G has degree 0. Suppose that |V | ≥ 3. Since G is connected, every
vertex of G must be in W . Let v ∈ V and let k denote the number of times v appears in W . Then,
there are 2k edges incident on v that are traversed by W . Since W traverses every edge of G exactly
once, it follows that d(v) = 2k.

b ⇒ c Suppose that every vertex of G has an even degree. Again, the result is trivial if |V | = 1. Suppose
that |V | ≥ 3. Since G is not a tree, it follows that G has at least once cycle. We proceed via strong
induction on the number of cycles in G, which we denote by k. The base case k = 1, is clear since G
is Cn. Fix k ≥ 1 and suppose that b ⇒ c holds for all connected graphs with at most k cycles. Let G
have (k + 1) cycles. Let C denote one cycle of G and let G′ denote the subgraph obtained from G by
deleting all the edges of C. Since we are deleting the edges of a cycle, the degree of each vertex in that
cycle is reduced by 2; hence, every vertex of G′ has an even degree. Therefore, every vertex of G′ has an
even degree and the components of G′ have no more than k cycles each. By the induction hypothesis,
each component of G′ can be partitioned into (edge-disjoint) cycles. This partition combined with C
forms an edge-disjoint partition of cycles for G.

c ⇒ a Suppose that the edges of G can be partitioned into disjoint cycles C1, . . . , Ck. Let C denote a circuit
on G of maximum length such that

E(C) = E(Cj1) ∪ E(Cj2) ∪ · · · ∪ E(Cjm),

for some collection of cycles Cj1 , . . . , Cjm . For the sake of contradiction, suppose there is an edge of G
that is not in C. Then, since G is connected, there is an edge e that is not an edge of C and is incident
with a vertex v in C. Furthermore, e must be an edge of a cycle Ci, for some i, where no edge of Ci

is in C. Construct C ′ by patching Ci into C at the vertex v. Then, C ′ is a circuit of G with a larger
length of C, which contradicts the maximality of C.
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