Graph Theory

Thomas R. Cameron

February 9, 2024

1 Key Topics

Today, we complete our proof that a connected graph of order n is a tree if and only if that graph has $(n-1)$ edges. Then, we introduce the concept of an Eulerian trail and circuit.

Recall the following results.
Theorem 1.1. Let $G=(V, E)$ be a tree with order $n \geq 1$. Then, $|E|=n-1$.
Theorem 1.2. A graph has a spanning tree if and only if it is connected.
Now, we will prove our main result regarding the size of a tree.
Corollary 1.3. Let $G=(V, E)$ be a connected graph of order $n \geq 1$. Then, G is a tree if and only if $|E|=n-1$.

Proof. The first direction follows from Theorem 1.1. For the converse, suppose that $|E|=n-1$. Since G is connected, Theorem 1.2 implies that G has a spanning tree, which we denote by T. Now, we have

$$
|E(T)|=|V(T)|-1=|V(G)|-1=|E(G)|
$$

Since $E(T) \subseteq E(G)$, it follows that $T=G$; hence, G is a tree.

1.1 Eulerian Trails

Let $G=(V, E)$ be a simple graph and let W be a trail in G; recall, a trail is a walk that does not repeat an edge. If W uses every edge exactly once, then we say that W is an Eulerian trail If, in addition, the trail starts and ends at the same vertex, then we say that W is an Eulerian circuit (or Eulerian tour). Finally, if G has an Eulerian circuit, then we say that G is an Eulerian graph.

We now consider the question, which graphs are Eulerian? For example, see Figure 1 .

Figure 1: Which of these graphs are Eulerian?
It is often useful to start by considering necessary conditions. For instance:

- If G is Eulerian, then G has at most one non-trivial component.
- If G is Eulerian, then G does not contain any leafs.
- If G is Eulerian and of order $n \geq 3$, then G is not a tree.

The above necessary conditions imply that when characterizing Eulerian graphs we need only consider connected graphs; moreover, cycles will play an important role. Below is the main result.

Theorem 1.4. Let $G=(V, E)$ be a connected graph. Then, the following statements are equivalent:
a. G is Eulerian.
b. Every vertex of G has an even degree.
c. The edges of G can be partitioned into (edge-disjoint) cycles.

Proof.
$a \Rightarrow b$ Suppose that G is Eulerian and let W denote an Eulerian circuit in G. If $|V|=1$, then the result is trivial since the only vertex of G has degree 0 . Suppose that $|V| \geq 3$. Since G is connected, every vertex of G must be in W. Let $v \in V$ and let k denote the number of times v appears in W. Then, there are $2 k$ edges incident on v that are traversed by W. Since W traverses every edge of G exactly once, it follows that $d(v)=2 k$.
$b \Rightarrow c$ Suppose that every vertex of G has an even degree. Again, the result is trivial if $|V|=1$. Suppose that $|V| \geq 3$. Since G is not a tree, it follows that G has at least once cycle. We proceed via strong induction on the number of cycles in G, which we denote by k. The base case $k=1$, is clear since G is C_{n}. Fix $k \geq 1$ and suppose that $b \Rightarrow c$ holds for all connected graphs with at most k cycles. Let G have $(k+1)$ cycles. Let C denote one cycle of G and let G^{\prime} denote the subgraph obtained from G by deleting all the edges of C. Since we are deleting the edges of a cycle, the degree of each vertex in that cycle is reduced by 2 ; hence, every vertex of G^{\prime} has an even degree. Therefore, every vertex of G^{\prime} has an even degree and the components of G^{\prime} have no more than k cycles each. By the induction hypothesis, each component of G^{\prime} can be partitioned into (edge-disjoint) cycles. This partition combined with C forms an edge-disjoint partition of cycles for G.
$c \Rightarrow a$ Suppose that the edges of G can be partitioned into disjoint cycles C_{1}, \ldots, C_{k}. Let C denote a circuit on G of maximum length such that

$$
E(C)=E\left(C_{j_{1}}\right) \cup E\left(C_{j_{2}}\right) \cup \cdots \cup E\left(C_{j_{m}}\right)
$$

for some collection of cycles $C_{j_{1}}, \ldots, C_{j_{m}}$. For the sake of contradiction, suppose there is an edge of G that is not in C. Then, since G is connected, there is an edge e that is not an edge of C and is incident with a vertex v in C. Furthermore, e must be an edge of a cycle C_{i}, for some i, where no edge of C_{i} is in C. Construct C^{\prime} by patching C_{i} into C at the vertex v. Then, C^{\prime} is a circuit of G with a larger length of C, which contradicts the maximality of C.

