Graph Theory

Thomas R. Cameron

February 14, 2024

1 Key Topics

Today, we begin our discussion of planar graphs.

1.1 Planar Graphs

A graph G is planar if it can be drawn in the plane in such a way that pairs of edges intersect only at vertices, if at all. For instance, every tree is planar and every cycle is planar. If G has no such representation, then we say it is nonplanar. As we will see, $K_{3,3}$ is a nonplanar graph. A drawing of a planar graph in which edges intersect only at vertices, if at all, is called a planar representation. In Figure 1 we see a planar graph drawn three different ways, note that the last drawing is not a planar representation.

Figure 1: A planar graph drawn three different ways
Given a planar representation of a graph G, a region is a maximal section of the plane in which any two points can be joined by a curve that does not intersect any part of G. For example, in Figure 2 we see a planar graph and its three regions.

Figure 2: A planar graph and its regions
We can think of a region as being bounded by edges. A single edge can come into contact with either one or two regions. We say that an edge e bounds a region R if e comes into contact with R and another region different from R. We define the bound degree of a region R, denoted $b(R)$, by the number of edges that bound R. For example, in Figure 2, we have $b\left(R_{1}\right)=3, b\left(R_{2}\right)=4$, and $b\left(R_{3}\right)=5$.

2 Exercises

I. Prove that all trees are planar.
II. Prove that all Eulerian graphs are planar.
III. For each graph below determine the number of vertices, edges, and regions.

