Graph Theory

Thomas R. Cameron

February 16, 2024

1 Key Topics

Today, we continue our discussion of planar graphs and prove Euler's formula.
Recall that a graph G is planar if it can be drawn in the plane in such a way that pairs of edges intersect only at vertices, if it all. A drawing of a plane graph in which edges intersect only at vertices, if at all, is called a planar representation. Given a planar representation of G, a region (face) is a maximal section of the plane in which any two points can be joined by a curve that does not intersect any part of G. For example, in Figure 1, we see a planar graph and its three regions.

Figure 1: A planar graph and its regions
We say that an edge e bounds a region R if e comes into contact with R and another region different from R. Furthermore, the bound degree of a region R, denoted $b(R)$, is equal to the number of edges that bound R.

Note that, in Figure 1, we have $b\left(R_{1}\right)=3, b\left(R_{2}\right)=4$, and $b\left(R_{3}\right)=5$. Moreover, the number of vertices n, number of edges m, and the number of faces f, satisfy the following formula, known as Euler's formula:

$$
\begin{equation*}
n-m+f=2 \tag{1}
\end{equation*}
$$

1.1 Euler's Formula

Theorem 1.1. If G is a connected planar graph with n vertices, m edges, and f faces. Then, $n-m+f=2$.
Proof. We proceed via induction on m. If $m=0$, then G must be a graph with 1 vertex and 1 face. Hence for any planar representation of G, the number of faces satisfies $f=1$, so $n-m+f=1-0+1=2$. Now, let $m \geq 1$ and suppose Euler's formula holds for all connected planar graphs with less than m edges.

Let G be a connected planar graph with m edges and consider two cases: one where G is a tree and the other where G is not a tree. If G is a tree, then $m=n-1$ and $f=1$; hence, $n-m+f=n-(n-1)+1=2$.

Now, suppose that G is not a tree and let C denote a cycle in G. Let e be an edge of C and note that e must bound a region R (the interior of C) and e is not a cut edge. Therefore, $G-e$ is a connected Eulerian graph with one fewer regions than G, one fewer edges, and the same number of vertices. Since the induction hypothesis applies to $G-e$, we have

$$
n-(e-1)+(f-1)=2
$$

which implies that $n-e+f=2$.

Euler's formula is useful for identifying non-planar graphs and other sufficient conditions for planar graphs.

Corollary 1.2. If G is a connected planar graph with $n \geq 3$ vertices and m edges, then $m \leq 3 n-6$. Furthermore, if equality holds then every region has bound degree 3.

Proof. Consider the sum

$$
S=\sum_{R} b(R)
$$

Note that every boundary edge is a boundary edge for two regions; hence, $S \leq 2 m$. Further, since each region is bounded by at least 3 edges, we have $S \geq 3 f$. Therefore,

$$
3 f \leq 2 m \Rightarrow 3(2+m-n) \leq 2 m \Rightarrow m \leq 3 n-6
$$

Corollary 1.3. If G is a connected planar graph, then $\delta(G) \leq 5$.
Proof. If $n \geq 6$, then the result is obvious. Suppose that $n>6$ and note that

$$
\sum_{v \in V} d(v)=2 m \leq 2(3 n-6)=6 n-12
$$

If each vertex has degree 6 or more, then $\sum_{v \in V} d(v) \geq 6 n$.

1.2 Nonplanar Graphs

Proposition 1.4. $K_{3,3}$ is non-planar.
Proposition 1.5. K_{5} is non-planar.

2 Exercises

I. Prove Proposition 1.4
II. Prove Proposition 1.5

