Graph Theory

Thomas R. Cameron

February 26, 2024

1 Key Topics

Today, we begin our discussion of matrices associated with a graph.

1.1 The Symmetric Matrices of a Graph

Let $G=(V, E)$ be a simple graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Also, let $S_{n}(\mathbb{R})$ denote the set of $n \times n$ real symmetric matrices. For each $A \in S_{n}(\mathbb{R})$ we denote its (i, j) entry $a_{i j}$. Since A is symmetric, it follows that $a_{i j}=a_{j i}$ for all $i \neq j$. Moreover, the set of matrices A associated with the graph G is defined by

$$
\mathcal{S}(G)=\left\{A \in S_{n}(\mathbb{R}): \forall i \neq j, a_{i j} \neq 0 \Leftrightarrow\left\{v_{i}, v_{j}\right\} \in E\right\} .
$$

For example,

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \in \mathcal{S}\left(P_{4}\right), \quad\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \notin \mathcal{S}\left(P_{4}\right)
$$

Note that there is no restriction on the diagonal entries of $A \in \mathcal{S}(G)$ since G is a simple graph with no loops.

1.2 Permutations and Isomorphisms

Consider the labeled graph G and an isomorphic graph G^{\prime} in Figure 1, where the corresponding isomorphism is given by

$$
f=\left\{\left(1,4^{\prime}\right),\left(2,3^{\prime}\right),\left(3,2^{\prime}\right),\left(4,1^{\prime}\right),\left(5,5^{\prime}\right)\right\} .
$$

G

G^{\prime}

Figure 1: A graph and an isomorhpic graph
In general, the graph G and G^{\prime} from Figure 1 have the following symmetric matrix form

$$
A=\left[\begin{array}{ccccc}
a_{1} & a_{12} & 0 & 0 & 0 \\
a_{12} & a_{2} & a_{23} & 0 & a_{25} \\
0 & a_{23} & a_{3} & a_{34} & 0 \\
0 & 0 & a_{34} & a_{4} & 0 \\
0 & a_{52} & 0 & 0 & a_{5}
\end{array}\right], \quad A^{\prime}=\left[\begin{array}{ccccc}
a_{1}^{\prime} & a_{12}^{\prime} & 0 & 0 & 0 \\
a_{12}^{\prime} & a_{2}^{\prime} & a_{23}^{\prime} & 0 & 0 \\
0 & a_{23}^{\prime} & a_{3}^{\prime} & a_{34}^{\prime} & a_{35}^{\prime} \\
0 & 0 & a_{34}^{\prime} & a_{4}^{\prime} & 0 \\
0 & 0 & a_{35}^{\prime} & 0 & a_{5}^{\prime}
\end{array}\right]
$$

Since G and G^{\prime} are isomorphic graphs, there should be a relationship between the matrices A and A^{\prime}. Indeed, their zero non-zero patterns are permutation similar. In particular, there exists a permutation matrix P such that for every $A^{\prime} \in \mathcal{S}\left(G^{\prime}\right)$ there is a $A \in \mathcal{S}(G)$ such that $P A P^{-1}=A^{\prime}$.

A permutation matrix P is a square binary matrix (entries are either 0 or 1) such that there is exactly one entry 1 in each row and column. By definition, a permutation matrix is orthonormal (its columns are orthogonal and have unit length). Hence, the inverse of a permutation matrix is its transpose, i.e., $P^{-1}=P^{T}$.

We can identify the specific permutation in the similarity transformation between A and A^{\prime} by using the isomorphism f. In particular, for each ordered pair $(i, j) \in f$, we mark the (j, i) entry of P equal to 1 ; all other entries of P are set equal to 0 . Since f is a bijection, it follows that P is a permutation matrix. In this particular example, we have

$$
P=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Note that

$$
\begin{aligned}
& P A P^{-1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
a_{1} & a_{12} & 0 & 0 & 0 \\
a_{12} & a_{2} & a_{23} & 0 & a_{25} \\
0 & a_{23} & a_{3} & a_{34} & 0 \\
0 & 0 & a_{34} & a_{4} & 0 \\
0 & a_{52} & 0 & 0 & a_{5}
\end{array}\right]\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
0 & 0 & a_{12} & a_{1} & 0 \\
0 & a_{23} & a_{2} & a_{12} & a_{25} \\
a_{34} & a_{3} & a_{23} & 0 & 0 \\
a_{4} & a_{34} & 0 & 0 & 0 \\
0 & 0 & a_{25} & 0 & a_{5}
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
a_{4} & a_{34} & 0 & 0 & 0 \\
a_{34} & a_{3} & a_{23} & 0 & 0 \\
0 & a_{23} & a_{2} & a_{12} & a_{25} \\
0 & 0 & a_{12} & a_{1} & 0 \\
0 & 0 & a_{25} & 0 & a_{5}
\end{array}\right]
\end{aligned}
$$

2 Exercises

I. Find the general form of the symmetric matrix associated with

- The empty graph E_{n},
- The path graph P_{n},
- The cycle graph C_{n},
- The star graph S_{n},
- The complete graph K_{n}.
II. Let Q be an orthonormal matrix. Show that $Q^{T} Q=I$. Hence, $Q^{T}=Q^{-1}$.

