Graph Theory

Thomas R. Cameron

February 28, 2024

1 Key Topics

Today, we continue our discussion of matrices associated with a graph. Further, introduce the adjacency and Laplacian matrices and discuss some of their properties.

1.1 Permutation Similarity

Consider the labeled graph G and an isomorphic graph G^{\prime} in Figure 1, where the corresponding isomorphism is given by

$$
f=\left\{\left(1,1^{\prime}\right),\left(2,4^{\prime}\right),\left(3,2^{\prime}\right),\left(4,5^{\prime}\right),\left(5,3^{\prime}\right)\right\}
$$

Figure 1: A graph and an isomorhpic graph
Then, there exists a permutation matrix P such that for each $A \in \mathcal{S}(G), P A P^{-1} \in \mathcal{S}\left(G^{\prime}\right)$. Indeed, we can construct P from the isomorphism f; in particular, for each $(i, j) \in f$ we mark the (j, i) entry of P equal to 1 ; all other entries of P are set equal to 0 . Since f is a bijection, it follows that P is a permutation matrix (why?).

To see that $P A P^{-1} \in \mathcal{S}(G)$, let $A^{\prime}=P A P^{-1}=P A P^{T}$. Then, $P^{T} A^{\prime} P=A$. Furthermore, the (i, j) entry of A can be denoted by

$$
\mathbf{e}_{i}^{T} A \mathbf{e}_{j}=\mathbf{e}_{i}^{T} P^{T} A^{\prime} P \mathbf{e}_{j}
$$

where \mathbf{e}_{i} denotes the i th standard basis vector, i.e., all entries of \mathbf{e}_{i} are zero except for the single one entry in the i th coordinate. The remainder of this exercise is left to you in Homework 5.

For the graph in Figure 1 note that

$$
P=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \text { and } P A P^{T}=\left[\begin{array}{ccccc}
d_{1} & a_{13} & a_{15} & 0 & 0 \\
a_{13} & d_{3} & a_{35} & 0 & 0 \\
a_{15} & a_{35} & d_{5} & 0 & 0 \\
0 & 0 & 0 & d_{2} & a_{24} \\
0 & 0 & 0 & a_{24} & d_{4}
\end{array}\right]
$$

In particular, note that the connected components appear in block diagonal form of the matrix.

1.2 Laplacian and Adjacency Matrices

Let $G=(V, E)$ be a simple graph with vertex set $V=\{1,2, \ldots, n\}$. The adjacency matrix $A \in \mathcal{S}(G)$ is a binary matrix where $a_{i j}=1$ if and only if $\{i, j\} \in E$. Let D be a diagonal matrix such that $d_{i i}=d(i)$, where $d(i)$ denotes the degree of vertex i. Then, the Laplacian matrix is defined by $L=D-A$.

The Laplacian matrix has several important properties, which we state below as propositions.

Proposition 1.1. The trace (sum of the diagonal entries) of the Laplacian satisfies

$$
\operatorname{tr}(L)=\sum_{i \in V} d(i)=2|E|
$$

Proposition 1.2. Let \mathbf{e} denote the all ones vector. Then, $L \mathbf{e}=0$.
From Proposition 1.2, it follows that the Laplacian matrix is not invertible and has zero determinant. In fact, we can generalize Proposition 1.2 to graphs with k connected components. Note that if G has k connected components, then (perhaps after re-labeling of the vertices), the Laplacian matrix can be written as

$$
L=\left[\begin{array}{llll}
L_{1} & & & \\
& L_{2} & & \\
& & \ddots & \\
& & & L_{k}
\end{array}\right]
$$

where L_{i} denotes the Laplacian of the connected component $G\left[V_{i}\right]$, i.e., the induced subgraph of the i th equivalence class under the connected-to relation. For each i define the incidence vector

$$
\mathbf{x}_{i}[u]= \begin{cases}1 & u \in V_{i} \\ 0 & u \notin V_{i}\end{cases}
$$

Proposition 1.3. Let G have k connected components. Then, for $i=1, \ldots, k$, the i th incidence vector satisfies $L \mathbf{x}_{i}=0$.

2 Exercises

I. Find the Laplacian of the empty, complete, cycle, path, and star graphs.
II. Prove Proposition 1.1
III. Prove Proposition 1.2
IV. Prove Proposition 1.3

