Graph Theory

Thomas R. Cameron

March 1, 2024

1 Key Topics

Today, we review eigenvalues and eigenvectors and being our investigation of the spectral properties of matrices associated with graphs.

1.1 Invertibility, Rank, and Nullity

Let $A \in \mathbb{C}^{n \times n}$ denote an $n \times n$ complex matrix. The matrix A is invertible if the matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbb{C}^{n}$. Note that A being invertible is equivalent to its echelon form is upper triangular with non-zero diagonal entries, which is equivalent to $\operatorname{det}(A) \neq 0$. If the matrix A is invertible, we define the inverse of A as the matrix A^{-1} whose i th column is the unique solution of $A \mathbf{x}=\mathbf{e}_{i}$, where \mathbf{e}_{i} denotes the i th standard basis vector. The inverse of A satisfies $A A^{-1}=A^{-1} A=I$.

If A is not invertible, then we say it is singular. In this case, there is more than one solution to the matrix equation $A \mathbf{x}=0$; in particular, there exists a non-zero $\mathbf{x} \in \mathbb{C}^{n}$ such that $A \mathbf{x}=0$. We define the null space of A as $\mathcal{N}(A)=\{\mathbf{x}: A \mathbf{x}=0\}$. The dimension of the null space is known as the nullity of A, denoted nullity (A).

If there exists a non-zero $\mathbf{x} \in \mathbb{C}^{n}$ such that $A \mathbf{x}=0$, then the columns of A are linearly dependent. Hence, the number of linearly independent columns is less than n. The rank of A, denoted $\operatorname{rank}(A)$, is the maximum number of linearly independent columns of A. The famous rank-nullity theorem states that $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$.

1.2 Eigenvalues and Eigenvectors

An eigenvalue of A is any scalar $\lambda \in \mathbb{C}$ such that $\lambda I-A$ is singular, i.e., there exists a non-zero $\mathbf{x} \in \mathbb{C}^{n}$ such that $(\lambda I-A) \mathbf{x}=0$. The vector \mathbf{x} is known as an eigenvector of A corresponding to λ. Moreover, note that $A \mathbf{x}=\lambda \mathbf{x}$.

To identify eigenvalues of A, we consider the characteristic polynomial of A, which is defined as follows

$$
p_{A}(\lambda)=\operatorname{det}(\lambda I-A)
$$

Since $\lambda I-A$ is singular when $\operatorname{det}(\lambda I-A)=0$, it follows that the roots of $p_{A}(\lambda)$ are the eigenvalues of A.
Example 1.1. Let

$$
A=\left[\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right]
$$

Note that

$$
\begin{aligned}
p_{A}(\lambda)=\operatorname{det}(\lambda I-A) & =\operatorname{det}\left(\left[\begin{array}{cc}
\lambda-2 & -3 \\
-3 & \lambda+6
\end{array}\right]\right) \\
& =(\lambda-2)(\lambda+6)-9 \\
& =\lambda^{2}+4 \lambda-21=(\lambda+7)(\lambda-3) .
\end{aligned}
$$

The eigenvalues are the roots of the characteristic polynomial; thus, we have

$$
\lambda_{1}=-7, \quad \lambda_{2}=3
$$

We can determine corresponding eigenvectors by investigating the null spaces

$$
\mathcal{N}\left(\lambda_{1} I-A\right)=\mathcal{N}\left(\left[\begin{array}{ll}
-9 & -3 \\
-3 & -1
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{c}
1 \\
-3
\end{array}\right]\right)
$$

and

$$
\mathcal{N}\left(\lambda_{2} I-A\right)=\mathcal{N}\left(\left[\begin{array}{cc}
1 & -3 \\
-3 & 9
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)
$$

Therefore, corresponding eigenvectors can be chosen as

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Theorem 1.2. Let $A \in \mathbb{C}^{n \times n}$ and let $S \in \mathbb{C}^{n \times n}$ be invertible. Then, the matrix $B=S A S^{-1}$ has the same eigenvalues as the matrix A.
Proof. Let $\lambda \in \mathbb{C}$ be an eigenvalue of A with corresponding eigenvector \mathbf{x}. Then, $A \mathbf{x}=\lambda \mathbf{x}$ and

$$
B S \mathbf{x}=S A \mathbf{x}=\lambda S \mathbf{x}
$$

Since S is invertible and \mathbf{x} is non-zero, it follows that $S \mathbf{x}$ is non-zero. Hence, λ is an eigenvalue of B with corresponding eigenvector $S \mathbf{x}$.

1.3 Symmetric Matrices

In Example 1.1, we saw that the 2×2 real symmetric matrix had 2 real eigenvalues. Moreover, we saw that the eigenvectors corresponding to distinct eigenvalues where orthogonal. These observations are not coincidental; in fact, they are true of all symmetric matrices. Below we state (without proof) the spectral theorem for symmetric matrices.

Theorem 1.3. Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then,
a. A has n real eigenvalues, counting multiplicities.
b. The maximum number of linearly independent eigenvectors corresponding to each eigenvalue λ is equal to the multiplicity of λ is a root of the characteristic polynomial of A.
c. The eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
d. The matrix A is orthogonally diagonalizable.

2 Exercises

I. Find the eigenvalues and corresponding eigenvectors of the Laplacian matrix of K_{3}.

