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1 Key Topics

Today, we review eigenvalues and eigenvectors and being our investigation of the spectral properties of
matrices associated with graphs.

1.1 Invertibility, Rank, and Nullity

Let A ∈ Cn×n denote an n× n complex matrix. The matrix A is invertible if the matrix equation Ax = b
has a unique solution for each b ∈ Cn. Note that A being invertible is equivalent to its echelon form is upper
triangular with non-zero diagonal entries, which is equivalent to det(A) ̸= 0. If the matrix A is invertible,
we define the inverse of A as the matrix A−1 whose ith column is the unique solution of Ax = ei, where ei
denotes the ith standard basis vector. The inverse of A satisfies AA−1 = A−1A = I.

If A is not invertible, then we say it is singular. In this case, there is more than one solution to the
matrix equation Ax = 0; in particular, there exists a non-zero x ∈ Cn such that Ax = 0. We define the null
space of A as N (A) = {x : Ax = 0}. The dimension of the null space is known as the nullity of A, denoted
nullity (A).

If there exists a non-zero x ∈ Cn such that Ax = 0, then the columns of A are linearly dependent.
Hence, the number of linearly independent columns is less than n. The rank of A, denoted rank (A), is
the maximum number of linearly independent columns of A. The famous rank-nullity theorem states that
rank (A) + nullity (A) = n.

1.2 Eigenvalues and Eigenvectors

An eigenvalue of A is any scalar λ ∈ C such that λI −A is singular, i.e., there exists a non-zero x ∈ Cn such
that (λI −A)x = 0. The vector x is known as an eigenvector of A corresponding to λ. Moreover, note that
Ax = λx.

To identify eigenvalues of A, we consider the characteristic polynomial of A, which is defined as follows

pA(λ) = det (λI −A) .

Since λI −A is singular when det (λI −A) = 0, it follows that the roots of pA(λ) are the eigenvalues of A.

Example 1.1. Let

A =

[
2 3
3 −6

]
.

Note that

pA(λ) = det (λI −A) = det

([
λ− 2 −3
−3 λ+ 6

])
= (λ− 2) (λ+ 6)− 9

= λ2 + 4λ− 21 = (λ+ 7)(λ− 3).

The eigenvalues are the roots of the characteristic polynomial; thus, we have

λ1 = −7, λ2 = 3.
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We can determine corresponding eigenvectors by investigating the null spaces

N (λ1I −A) = N
([

−9 −3
−3 −1

])
= span

([
1
−3

])
.

and

N (λ2I −A) = N
([

1 −3
−3 9

])
= span

([
3
1

])
.

Therefore, corresponding eigenvectors can be chosen as

v1 =

[
1
−3

]
, v2 =

[
3
1

]
.

Theorem 1.2. Let A ∈ Cn×n and let S ∈ Cn×n be invertible. Then, the matrix B = SAS−1 has the same
eigenvalues as the matrix A.

Proof. Let λ ∈ C be an eigenvalue of A with corresponding eigenvector x. Then, Ax = λx and

BSx = SAx = λSx.

Since S is invertible and x is non-zero, it follows that Sx is non-zero. Hence, λ is an eigenvalue of B with
corresponding eigenvector Sx.

1.3 Symmetric Matrices

In Example 1.1, we saw that the 2 × 2 real symmetric matrix had 2 real eigenvalues. Moreover, we saw
that the eigenvectors corresponding to distinct eigenvalues where orthogonal. These observations are not
coincidental; in fact, they are true of all symmetric matrices. Below we state (without proof) the spectral
theorem for symmetric matrices.

Theorem 1.3. Let A ∈ Rn×n be symmetric. Then,

a. A has n real eigenvalues, counting multiplicities.

b. The maximum number of linearly independent eigenvectors corresponding to each eigenvalue λ is equal to
the multiplicity of λ is a root of the characteristic polynomial of A.

c. The eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

d. The matrix A is orthogonally diagonalizable.

2 Exercises

I. Find the eigenvalues and corresponding eigenvectors of the Laplacian matrix of K3.
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