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1 Key Topics

Today, we continue our review of the eigenvalues and eigenvectors of a matrix. Further, we introduce the
spectral theorem for symmetric matrices and the notion of an M-matrix.

Recall that an eigenvalue of the matrix A ∈ Cn×n is a scalar λ ∈ C such that λI − A is singular, i.e.,
there exists a non-zero x ∈ Cn such that (λI −A)x = 0. The vector x is an eigenvector of A corresponding
to λ. Moreover, note that Ax = λx.

Example 1.1. Consider the Laplacian matrix associated with K3:

L =

 2 −1 −1
−1 2 −1
−1 −1 −2

 = 3I − eeT ,

where I denotes the 3× 3 identity matrix and e denotes the all ones vector of dimension 3.
Let

v1 =

11
1

 , v2 =

 1
−1
0

 , v3 =

 1
1
−2

 .

Then one can readily verify that v1, v2, and v3 are eigenvectors of L corresponding to the eigenvalues λ1 = 0,
λ2 = 3, and λ3 = 3.

A major theme over the next few weeks will be to investigate to what extent the eigenvalues (spectra)
of the matrices in S(G) characterize the properties of G. Since the properties of G are not influenced by
the re-labeling of vertices, it is vital the same be true of the eigenvalues of S(G). Fortunately, we have the
following result.

Theorem 1.2. Let A ∈ Cn×n and let S ∈ Cn×n be invertible. Then, the matrix B = SAS−1 has the same
eigenvalues as the matrix A.

Proof. Let λ ∈ C be an eigenvalue of A with corresponding eigenvector x. Then, Ax = λx and

BSx = SAx = λSx.

Since S is invertible and x is non-zero, it follows that Sx is non-zero. Hence, λ is an eigenvalue of B with
corresponding eigenvector Sx.

1.1 Symmetric Matrices

In Example 1.1, we saw that the 3 × 3 real symmetric matrix had 3 real eigenvalues. Moreover, we saw
that the eigenvectors corresponding to distinct eigenvalues where orthogonal. These observations are not
coincidental; in fact, they are true of all symmetric matrices. Below we state (without proof) the spectral
theorem for symmetric matrices.

Theorem 1.3. Let A ∈ Rn×n be symmetric. Then,

a. A has n real eigenvalues, counting multiplicities.
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b. The maximum number of linearly independent eigenvectors corresponding to each eigenvalue λ is equal to
the multiplicity of λ is a root of the characteristic polynomial of A.

c. The eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

d. The matrix A is orthogonally diagonalizable.

1.2 M-Matrices

To understand the definition of an M-matrix, we must first introduce the non-negative matrices and the
spectral radius of a matrix. A non-negative matrix A, denoted A ≥ 0, is a real matrix whose entries are
non-negative. The spectral radius of a matrix A, denote ρ(A), is the maximum magnitude of an eigenvalue
of A, i.e.,

ρ(A) = {|λ| : det(λI −A) = 0} .

Now, a real matrix A is an M-matrix if it can be written in the following form:

A = sI −B,

where s ≥ ρ(B) and B ≥ 0.
We can bound the spectral radius of a matrix using Gerschgorin’s theorem.

Theorem 1.4. Let A ∈ Cn×n. Then for any eigenvalue λ of A there exists an integer k ∈ {1, . . . , n} such
that

|λ− ak,k| ≤
n∑

j=1,j ̸=k

|ak,j | .

Proof. Let λ be an eigenvalue of A and let x be a corresponding eigenvector. Then, for each i ∈ {1, . . . , n},
we have

n∑
j=1

ai,jxj = λxi

Since x is non-zero, there is an integer k such that 0 < |xk| = max{|xi| : i ∈ {1, . . . , n}}. For this k, we have

(λ− ak,k)xk =
∑

j=1,j ̸=k

ak,jxj

Taking absolute values and applying the triangle inequality:

|λ− ak,k| |xk| ≤
∑

j=1,j ̸=k

|ak,j | |xj | ≤
∑

j=1,j ̸=k

|ak,j | |xk| .

Therefore,

|λ− ak,k| ≤
n∑

j=1,j ̸=k

|ak,j | .

2 Exercises

I. Show that the Laplacian matrix corresponding to each graph of order 3 is an M-matrix.
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