Graph Theory

Thomas R. Cameron

March 11, 2024

1 Key Topics

Today, we continue our review of the eigenvalues and eigenvectors of a matrix. Further, we introduce the spectral theorem for symmetric matrices and the notion of an M-matrix.

Recall that an eigenvalue of the matrix $A \in \mathbb{C}^{n \times n}$ is a scalar $\lambda \in \mathbb{C}$ such that $\lambda I-A$ is singular, i.e., there exists a non-zero $\mathbf{x} \in \mathbb{C}^{n}$ such that $(\lambda I-A) \mathbf{x}=0$. The vector \mathbf{x} is an eigenvector of A corresponding to λ. Moreover, note that $A \mathbf{x}=\lambda \mathbf{x}$.
Example 1.1. Consider the Laplacian matrix associated with K_{3} :

$$
L=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & -2
\end{array}\right]=3 I-\mathbf{e e}^{T}
$$

where I denotes the 3×3 identity matrix and \mathbf{e} denotes the all ones vector of dimension 3 .
Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

Then one can readily verify that $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are eigenvectors of L corresponding to the eigenvalues $\lambda_{1}=0$, $\lambda_{2}=3$, and $\lambda_{3}=3$.

A major theme over the next few weeks will be to investigate to what extent the eigenvalues (spectra) of the matrices in $\mathcal{S}(G)$ characterize the properties of \mathcal{G}. Since the properties of \mathcal{G} are not influenced by the re-labeling of vertices, it is vital the same be true of the eigenvalues of $\mathcal{S}(G)$. Fortunately, we have the following result.

Theorem 1.2. Let $A \in \mathbb{C}^{n \times n}$ and let $S \in \mathbb{C}^{n \times n}$ be invertible. Then, the matrix $B=S A S^{-1}$ has the same eigenvalues as the matrix A.

Proof. Let $\lambda \in \mathbb{C}$ be an eigenvalue of A with corresponding eigenvector \mathbf{x}. Then, $A \mathbf{x}=\lambda \mathbf{x}$ and

$$
B S \mathbf{x}=S A \mathbf{x}=\lambda S \mathbf{x}
$$

Since S is invertible and \mathbf{x} is non-zero, it follows that $S \mathbf{x}$ is non-zero. Hence, λ is an eigenvalue of B with corresponding eigenvector $S \mathbf{x}$.

1.1 Symmetric Matrices

In Example 1.1, we saw that the 3×3 real symmetric matrix had 3 real eigenvalues. Moreover, we saw that the eigenvectors corresponding to distinct eigenvalues where orthogonal. These observations are not coincidental; in fact, they are true of all symmetric matrices. Below we state (without proof) the spectral theorem for symmetric matrices.

Theorem 1.3. Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then,
a. A has n real eigenvalues, counting multiplicities.
b. The maximum number of linearly independent eigenvectors corresponding to each eigenvalue λ is equal to the multiplicity of λ is a root of the characteristic polynomial of A.
c. The eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
d. The matrix A is orthogonally diagonalizable.

1.2 M-Matrices

To understand the definition of an M-matrix, we must first introduce the non-negative matrices and the spectral radius of a matrix. A non-negative matrix A, denoted $A \geq 0$, is a real matrix whose entries are non-negative. The spectral radius of a matrix A, denote $\rho(A)$, is the maximum magnitude of an eigenvalue of A, i.e.,

$$
\rho(A)=\{|\lambda|: \operatorname{det}(\lambda I-A)=0\}
$$

Now, a real matrix A is an M-matrix if it can be written in the following form:

$$
A=s I-B
$$

where $s \geq \rho(B)$ and $B \geq 0$.
We can bound the spectral radius of a matrix using Gerschgorin's theorem.
Theorem 1.4. Let $A \in \mathbb{C}^{n \times n}$. Then for any eigenvalue λ of A there exists an integer $k \in\{1, \ldots, n\}$ such that

$$
\left|\lambda-a_{k, k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k, j}\right|
$$

Proof. Let λ be an eigenvalue of A and let \mathbf{x} be a corresponding eigenvector. Then, for each $i \in\{1, \ldots, n\}$, we have

$$
\sum_{j=1}^{n} a_{i, j} x_{j}=\lambda x_{i}
$$

Since \mathbf{x} is non-zero, there is an integer k such that $0<\left|x_{k}\right|=\max \left\{\left|x_{i}\right|: i \in\{1, \ldots, n\}\right\}$. For this k, we have

$$
\left(\lambda-a_{k, k}\right) x_{k}=\sum_{j=1, j \neq k} a_{k, j} x_{j}
$$

Taking absolute values and applying the triangle inequality:

$$
\left|\lambda-a_{k, k}\right|\left|x_{k}\right| \leq \sum_{j=1, j \neq k}\left|a_{k, j}\right|\left|x_{j}\right| \leq \sum_{j=1, j \neq k}\left|a_{k, j}\right|\left|x_{k}\right|
$$

Therefore,

$$
\left|\lambda-a_{k, k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k, j}\right|
$$

2 Exercises

I. Show that the Laplacian matrix corresponding to each graph of order 3 is an M-matrix.

