Graph Theory

Thomas R. Cameron

March 11, 2024

1 Key Topics

Today, we continue our review of the eigenvalues and eigenvectors of a matrix. Further, we introduce the spectral theorem for symmetric matrices and the notion of an M-matrix.

Recall that an eigenvalue of the matrix $A \in \mathbb{C}^{n \times n}$ is a scalar $\lambda \in \mathbb{C}$ such that $\lambda I - A$ is singular, i.e., there exists a non-zero $\mathbf{x} \in \mathbb{C}^n$ such that $(\lambda I - A) \mathbf{x} = 0$. The vector \mathbf{x} is an eigenvector of A corresponding to λ . Moreover, note that $A\mathbf{x} = \lambda \mathbf{x}$.

Example 1.1. Consider the Laplacian matrix associated with K_3 :

$$L = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & -2 \end{bmatrix} = 3I - \mathbf{e}\mathbf{e}^T$$

where I denotes the 3×3 identity matrix and **e** denotes the all ones vector of dimension 3. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}.$$

Then one can readily verify that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are eigenvectors of L corresponding to the eigenvalues $\lambda_1 = 0$, $\lambda_2 = 3$, and $\lambda_3 = 3$.

A major theme over the next few weeks will be to investigate to what extent the eigenvalues (spectra) of the matrices in $\mathcal{S}(G)$ characterize the properties of \mathcal{G} . Since the properties of \mathcal{G} are not influenced by the re-labeling of vertices, it is vital the same be true of the eigenvalues of $\mathcal{S}(G)$. Fortunately, we have the following result.

Theorem 1.2. Let $A \in \mathbb{C}^{n \times n}$ and let $S \in \mathbb{C}^{n \times n}$ be invertible. Then, the matrix $B = SAS^{-1}$ has the same eigenvalues as the matrix A.

Proof. Let $\lambda \in \mathbb{C}$ be an eigenvalue of A with corresponding eigenvector **x**. Then, $A\mathbf{x} = \lambda \mathbf{x}$ and

$$BS\mathbf{x} = SA\mathbf{x} = \lambda S\mathbf{x}.$$

Since S is invertible and **x** is non-zero, it follows that $S\mathbf{x}$ is non-zero. Hence, λ is an eigenvalue of B with corresponding eigenvector $S\mathbf{x}$.

1.1 Symmetric Matrices

In Example 1.1, we saw that the 3×3 real symmetric matrix had 3 real eigenvalues. Moreover, we saw that the eigenvectors corresponding to distinct eigenvalues where orthogonal. These observations are not coincidental; in fact, they are true of all symmetric matrices. Below we state (without proof) the spectral theorem for symmetric matrices.

Theorem 1.3. Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then,

a. A has n real eigenvalues, counting multiplicities.

- b. The maximum number of linearly independent eigenvectors corresponding to each eigenvalue λ is equal to the multiplicity of λ is a root of the characteristic polynomial of A.
- c. The eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
- d. The matrix A is orthogonally diagonalizable.

1.2 M-Matrices

To understand the definition of an M-matrix, we must first introduce the non-negative matrices and the spectral radius of a matrix. A non-negative matrix A, denoted $A \ge 0$, is a real matrix whose entries are non-negative. The spectral radius of a matrix A, denote $\rho(A)$, is the maximum magnitude of an eigenvalue of A, i.e.,

$$\rho(A) = \{ |\lambda| : \det(\lambda I - A) = 0 \}.$$

Now, a real matrix A is an *M*-matrix if it can be written in the following form:

$$A = sI - B,$$

where $s \ge \rho(B)$ and $B \ge 0$.

We can bound the spectral radius of a matrix using Gerschgorin's theorem.

Theorem 1.4. Let $A \in \mathbb{C}^{n \times n}$. Then for any eigenvalue λ of A there exists an integer $k \in \{1, \ldots, n\}$ such that

$$|\lambda - a_{k,k}| \le \sum_{j=1, j \ne k}^{n} |a_{k,j}|.$$

Proof. Let λ be an eigenvalue of A and let \mathbf{x} be a corresponding eigenvector. Then, for each $i \in \{1, \ldots, n\}$, we have

$$\sum_{j=1}^{n} a_{i,j} x_j = \lambda x_i$$

Since **x** is non-zero, there is an integer k such that $0 < |x_k| = \max\{|x_i| : i \in \{1, \dots, n\}\}$. For this k, we have

$$(\lambda - a_{k,k})x_k = \sum_{j=1, j \neq k} a_{k,j} x_j$$

Taking absolute values and applying the triangle inequality:

$$|\lambda - a_{k,k}| |x_k| \le \sum_{j=1, j \ne k} |a_{k,j}| |x_j| \le \sum_{j=1, j \ne k} |a_{k,j}| |x_k|.$$

Therefore,

$$|\lambda - a_{k,k}| \le \sum_{j=1, j \ne k}^n |a_{k,j}|.$$

2 Exercises

I. Show that the Laplacian matrix corresponding to each graph of order 3 is an M-matrix.