Graph Theory

Thomas R. Cameron

March 13, 2024

1 Key Topics

Today, we continue our investigation of eigenvalues, eigenvectors, and M-matrices.
Recall that an eigenvalue of the matrix $A \in \mathbb{C}^{n \times n}$ is a scalar $\lambda \in \mathbb{C}$ such that $\lambda I-A$ is singular, i.e., there exists a non-zero $\mathbf{x} \in \mathbb{C}^{n}$ such that $(\lambda I-A) \mathbf{x}=0$. The vector \mathbf{x} is an eigenvector of A corresponding to λ. Moreover, note that $A \mathbf{x}=\lambda \mathbf{x}$.

Also, recall that $A \in \mathbb{R}^{n \times n}$ is an M-matrix if it can be written in the following form:

$$
A=s I-B
$$

where $s \geq \rho(B)$ and $B \geq 0$. We can bound the spectral radius of a matrix using Gerschgorin's theorem.
Theorem 1.1. Let $A \in \mathbb{C}^{n \times n}$. Then for any eigenvalue λ of A there exists an integer $k \in\{1, \ldots, n\}$ such that

$$
\left|\lambda-a_{k, k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k, j}\right| .
$$

Proof. Let λ be an eigenvalue of A and let \mathbf{x} be a corresponding eigenvector. Then, for each $i \in\{1, \ldots, n\}$, we have

$$
\sum_{j=1}^{n} a_{i, j} x_{j}=\lambda x_{i}
$$

Since \mathbf{x} is non-zero, there is an integer k such that $0<\left|x_{k}\right|=\max \left\{\left|x_{i}\right|: i \in\{1, \ldots, n\}\right\}$. For this k, we have

$$
\left(\lambda-a_{k, k}\right) x_{k}=\sum_{j=1, j \neq k} a_{k, j} x_{j}
$$

Taking absolute values and applying the triangle inequality:

$$
\left|\lambda-a_{k, k}\right|\left|x_{k}\right| \leq \sum_{j=1, j \neq k}\left|a_{k, j}\right|\left|x_{j}\right| \leq \sum_{j=1, j \neq k}\left|a_{k, j}\right|\left|x_{k}\right|
$$

Therefore,

$$
\left|\lambda-a_{k, k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k, j}\right|
$$

Corollary 1.2. Let $A \in \mathbb{C}^{n \times n}$. Then,

$$
\rho(A) \leq \max \left\{\sum_{j=1}^{n}\left|a_{i, j}\right|: i \in\{1, \ldots, n\}\right\}
$$

1.1 Properties of M-Matrices

In this section, we will introduce several properties of M-matrices. Since all Laplacian matrices are symmetric M-matrices, that will be our focus.

Proposition 1.3. Let A be a symmetric M-matrix. Then, the eigenvalues of A are non-negative.
Proof. Since A is an M-matrix, it can be written in the form

$$
A=s I-B
$$

where $s \geq \rho(B)$. Let λ be an eigenvalue of A and let \mathbf{x} be a corresponding eigenvector. Then, $A \mathbf{x}=\lambda \mathbf{x}$, which can be re-written as

$$
B \mathbf{x}=(s-\lambda) \mathbf{x}
$$

Since λ is real, it follows that $s-\lambda$ is real. Furthermore, $s-\lambda \leq \rho(B)$, which implies that $\lambda \geq 0$.
The next property (see Corollary 1.5) will be proved using the Perron Frobenius theorem, which we state (in part) below. Note that a matrix A is irreducible if there is no permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
B & C \\
0 & D
\end{array}\right]
$$

For symmetric matrices, A is irreducible if there is no permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
B & 0 \\
0 & C
\end{array}\right]
$$

i.e., the graph corresponding to A is connected (does not have more than one connected component). Also, note that an eigenvalue λ of the matrix A is simple if there is only one linearly independent eigenvector of A corresponding to λ.

Theorem 1.4 (Perron Frobenius). If $A \geq 0$ is irreducible, then $\rho(A)$ is a simple eigenvalue.
Corollary 1.5. Let A be a singular, irreducible M-matrix. Then, 0 is a simple eigenvalue of A.
Proof. Since A is an M-matrix, it follows that

$$
A=s I-B
$$

where $s \geq \rho(B)$ and $B \geq 0$. Furthermore, since A is irreducible, it follows that $B \geq 0$ is irreducible. Hence, the Perron Frobenius Theorem implies that $\rho(B)$ is a simple eigenvalue.

Note that the eigenvalues of A are of the form $s-\lambda$, where λ is an eigenvalue of B. Since A is singular, it follows that $0=s-\rho(B)$ is an eigenvalue of A. Hence, $s=\rho(B)$. Furthermore, since $\rho(B)$ is a simple eigenvalue of B, it follows that 0 is a simple eigenvalue of A.

2 Exercises

I. Let $G=(V, E)$ be a graph and let L be the Laplacian matrix of G. Show that the multiplicity of 0 as an eigenvalue of G is equal to the number of connected components of G.

