Graph Theory

Thomas R. Cameron

March 13, 2024

1 Key Topics

Today, we continue our investigation of eigenvalues, eigenvectors, and M-matrices.

Recall that an eigenvalue of the matrix $A \in \mathbb{C}^{n \times n}$ is a scalar $\lambda \in \mathbb{C}$ such that $\lambda I - A$ is singular, i.e., there exists a non-zero $\mathbf{x} \in \mathbb{C}^n$ such that $(\lambda I - A)\mathbf{x} = 0$. The vector \mathbf{x} is an eigenvector of A corresponding to λ . Moreover, note that $A\mathbf{x} = \lambda \mathbf{x}$.

Also, recall that $A \in \mathbb{R}^{n \times n}$ is an M-matrix if it can be written in the following form:

$$A = sI - B,$$

where $s \ge \rho(B)$ and $B \ge 0$. We can bound the spectral radius of a matrix using Gerschgorin's theorem.

Theorem 1.1. Let $A \in \mathbb{C}^{n \times n}$. Then for any eigenvalue λ of A there exists an integer $k \in \{1, \ldots, n\}$ such that

$$|\lambda - a_{k,k}| \le \sum_{j=1, j \ne k}^n |a_{k,j}|.$$

Proof. Let λ be an eigenvalue of A and let \mathbf{x} be a corresponding eigenvector. Then, for each $i \in \{1, \ldots, n\}$, we have

$$\sum_{j=1}^{n} a_{i,j} x_j = \lambda x_i$$

Since **x** is non-zero, there is an integer k such that $0 < |x_k| = \max\{|x_i| : i \in \{1, \dots, n\}\}$. For this k, we have

$$(\lambda - a_{k,k})x_k = \sum_{j=1, j \neq k} a_{k,j}x_j$$

Taking absolute values and applying the triangle inequality:

$$|\lambda - a_{k,k}| |x_k| \le \sum_{j=1, j \ne k} |a_{k,j}| |x_j| \le \sum_{j=1, j \ne k} |a_{k,j}| |x_k|.$$

Therefore,

$$|\lambda - a_{k,k}| \le \sum_{j=1, j \ne k}^{n} |a_{k,j}|.$$

Corollary 1.2. Let $A \in \mathbb{C}^{n \times n}$. Then,

$$\rho(A) \le \max\left\{\sum_{j=1}^{n} |a_{i,j}| : i \in \{1, \dots, n\}\right\}.$$

1.1 Properties of M-Matrices

In this section, we will introduce several properties of M-matrices. Since all Laplacian matrices are symmetric M-matrices, that will be our focus.

Proposition 1.3. Let A be a symmetric M-matrix. Then, the eigenvalues of A are non-negative.

Proof. Since A is an M-matrix, it can be written in the form

$$A = sI - B,$$

where $s \ge \rho(B)$. Let λ be an eigenvalue of A and let \mathbf{x} be a corresponding eigenvector. Then, $A\mathbf{x} = \lambda \mathbf{x}$, which can be re-written as

$$B\mathbf{x} = (s - \lambda)\mathbf{x}.$$

Since λ is real, it follows that $s - \lambda$ is real. Furthermore, $s - \lambda \leq \rho(B)$, which implies that $\lambda \geq 0$.

The next property (see Corollary 1.5) will be proved using the Perron Frobenius theorem, which we state (in part) below. Note that a matrix A is *irreducible* if there is no permutation matrix P such that

$$PAP^T = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}.$$

For symmetric matrices, A is irreducible if there is no permutation matrix P such that

$$PAP^T = \begin{bmatrix} B & 0\\ 0 & C \end{bmatrix},$$

i.e., the graph corresponding to A is connected (does not have more than one connected component). Also, note that an eigenvalue λ of the matrix A is *simple* if there is only one linearly independent eigenvector of A corresponding to λ .

Theorem 1.4 (Perron Frobenius). If $A \ge 0$ is irreducible, then $\rho(A)$ is a simple eigenvalue.

Corollary 1.5. Let A be a singular, irreducible M-matrix. Then, 0 is a simple eigenvalue of A.

Proof. Since A is an M-matrix, it follows that

$$A = sI - B,$$

where $s \ge \rho(B)$ and $B \ge 0$. Furthermore, since A is irreducible, it follows that $B \ge 0$ is irreducible. Hence, the Perron Frobenius Theorem implies that $\rho(B)$ is a simple eigenvalue.

Note that the eigenvalues of A are of the form $s - \lambda$, where λ is an eigenvalue of B. Since A is singular, it follows that $0 = s - \rho(B)$ is an eigenvalue of A. Hence, $s = \rho(B)$. Furthermore, since $\rho(B)$ is a simple eigenvalue of B, it follows that 0 is a simple eigenvalue of A.

2 Exercises

I. Let G = (V, E) be a graph and let L be the Laplacian matrix of G. Show that the multiplicity of 0 as an eigenvalue of G is equal to the number of connected components of G.