Graph Theory

Thomas R. Cameron

March 15, 2024

1 Key Topics

Today, we begin our investigation of spectral graph theory. In particular, we show that certain graphs are characterized by their Laplacian spectrum.

Let G = (V, E) be a simple graph and let L be the Laplacian matrix of G. One aspect of spectral graph theory is to determine what properties of the graph G can be realized by the spectrum (eigenvalues) of L. As an example, the multiplicity of the zero eigenvalue of L is equal to the number of connected components of G. Throughout, we will use $\sigma(L)$ to denote the spectrum of the Laplacian matrix L.

1.1 Graphs Determined by Laplacian Spectrum

In a few cases, the graph is completely characterized by its Laplacian spectrum. For example, the empty graph is completely characterized by its Laplacian spectrum.

Proposition 1.1. Let G = (V, E) be a simple graph and let L be the Laplacian matrix of G. Then, G is the empty graph if and only if $\sigma(L) = \{0, ..., 0\}$.

Proof. If G is the empty graph, the L is the zero matrix and $\sigma(L) = \{0, \ldots, 0\}$.

If $\sigma(L) = \{0, \ldots, 0\}$, then G has n connected components so G must the be the empty graph.

Next, we show that the complete graph is completely characterized by its Laplacian spectrum. To this end, we need the following property of eigenvalues.

Proposition 1.2. Let $A \in \mathbb{C}^{n \times n}$ have spectrum $\sigma(A) = \{\lambda_1, \ldots, \lambda_n\}$. Then,

(*i.*)
$$\det(A) = \lambda_1 \cdots \lambda_n$$
,

(*ii.*) $\operatorname{tr}(A) = \lambda_1 + \dots + \lambda_n$.

Theorem 1.3. Let G = (V, E) be a simple graph and let L be the Laplacian. Then, G is the complete graph of order n if and only if $\sigma(L) = \{0, n, ..., n\}$.

Proof. If G is the complete graph of order n, then L can be written as

$$L = nI - J,$$

where J is the all ones matrix. Let \mathbf{v}_1 denote the all ones vector and let $\mathbf{v}_2, \ldots, \mathbf{v}_n$ denote real vectors orthogonal to \mathbf{v}_1 . Then,

$$L\mathbf{v}_1 = n\mathbf{v}_1 - n\mathbf{v}_1 = 0\mathbf{v}_1$$

and

$$L\mathbf{v}_i = n\mathbf{v}_i,$$

for i = 2, ..., n.

Conversely, suppose that $\sigma(L) = \{0, n, ..., n\}$. Then, G is connected, since the zero eigenvalue has multiplicity one. Moreover,

$$\operatorname{tr}(L) = n(n-1) = 2|E|,$$

which implies that $|E| = \binom{n}{2}$. Hence, G is the complete graph of order n.

Theorem 1.4. Let G = (V, E) be a simple graph and let L be the Laplacian. Then, G is the star graph of order n if and only if $\sigma(L) = \{0, 1, ..., 1, n\}$.

Proof. Suppose that G is the star graph of order n. Then, the Laplacian matrix can be written as

$$L = nI - \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & (n-1) & & \\ \vdots & & \ddots & \\ 1 & & & (n-1) \end{bmatrix}.$$

Let \mathbf{v}_1 denote the all ones vector. Then, $L\mathbf{v}_1 = n\mathbf{e} - n\mathbf{e} = 0\mathbf{v}_1$. Next, let

$$\mathbf{v}_n = \begin{bmatrix} (n-1) \\ -1 \\ \vdots \\ -1 \end{bmatrix}.$$

Then, $L\mathbf{v}_2 = n\mathbf{v}_n - 0\mathbf{v}_n = n\mathbf{v}_n$. Finally, for $i = 2, \ldots, n-1$, let

$$\mathbf{v}_i = \mathbf{e}_i - \mathbf{e}_{i+1}.$$

Then, $L\mathbf{v}_i = n\mathbf{v}_i - (n-1)\mathbf{v}_i = 1\mathbf{v}_i$.

Conversely, suppose that $\sigma(L) = \{0, 1, ..., 1, n\}$. Use the fact that $L + \overline{L} = nI - J$ to prove that G is the star graph of order n.

2 Exercises

I. Let G = (V, E) be a simple graph and let L be the Laplacian. Also, let \overline{G} denote the complement of G and let \overline{L} denote the Laplacian. Show that $L + \overline{L} = nI - J$.