Graph Theory

Thomas R. Cameron

March 18, 2024

1 Key Topics

Today, we continue our investigation of the algebraic connectivity of a graph.
Let $G=(V, E)$ be a simple graph and let L be the Laplacian matrix of G. Denote the Laplacian spectrum by

$$
0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

where λ_{1} is the zero eigenvalue corresponding to the all ones eigenvector.
The algebraic connectivity of G, denote $a(G)$, is defined as the second smallest Laplacian eigenvalue, that is, $a(G)=\lambda_{2}$. Moreover, using the Courant-Fischer-Weyl min-max principle, we can define the algebraic connectivity as

$$
a(G)=\min \left\{\mathbf{x}^{T} L \mathbf{x}: \mathbf{x}^{T} \mathbf{x}=1, \mathbf{x}^{T} \mathbf{e}=0\right\}
$$

Last time, we proved the following results.
Theorem 1.1. Let $G=(V, E)$ be a simple graph and let \bar{G} denote the complement of G. Also, let L and \bar{L} denote the Laplacian of G and \bar{G}, respectively. Finally, let the spectrum of L be denoted by

$$
0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

Then, the spectrum of \bar{L} is

$$
0=\lambda_{1} \leq\left(n-\lambda_{n}\right) \leq\left(n-\lambda_{n-1}\right) \leq \cdots \leq\left(n-\lambda_{2}\right)
$$

Proposition 1.2. Let $G=(V, E)$ be a simple graph and let $\delta(G)$ denote the minimum degree of G. Then, the algebraic connectivity satisfies

$$
a(G) \leq \frac{n}{n-1} \delta(G)
$$

1.1 More Bounds on the Algebraic Connectivity

We begin by defining a related graph parameter: $b(G)=\lambda_{n}$. By Theorem 1.1, $b(G)=n-a(\bar{G})$. Moreover, using the Courant-Fisher-Weyl min-max principle, we have

$$
b(G)=\max \left\{\mathbf{x}^{T} L \mathbf{x}: \mathbf{x}^{T} \mathbf{x}=1, \mathbf{x}^{T} \mathbf{e}=0\right\}
$$

Using Theorem 1.1 and Proposition 1.2, we can prove the following inequality

$$
\begin{equation*}
b(G) \geq \frac{n}{n-1} \Delta(G) \tag{1}
\end{equation*}
$$

where $\Delta(G)$ is the maximum degree of G.
In the following lemma, we use the min-max principle to obtain bounds on the algebraic connectivity for subgraphs.

Lemma 1.3. Let $G=(V, E)$ be a simple graph and let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a subgraph of G. If $V=V^{\prime}$, then

$$
a\left(G^{\prime}\right) \leq a(G) \text { and } b\left(G^{\prime}\right) \leq b(G)
$$

Proof. Let $\hat{G}=(\hat{V}, \hat{E})$, where $V=\hat{V}$ and $\hat{E}=E \backslash E^{\prime}$. Then, $G=G^{\prime} \cup \hat{G}$ is an edge-disjoint union. Therefore,

$$
L(G)=L\left(G^{\prime}\right)+L(\hat{G})
$$

which implies that

$$
a(G) \geq a\left(G^{\prime}\right)+a(\hat{G}) \geq a\left(G^{\prime}\right)
$$

Now, let \bar{G} and $\overline{G^{\prime}}$ denote the complement of G and G^{\prime}, respectively. Since G^{\prime} is a subgraph of G, where $V=V^{\prime}$, it follows that \bar{G} is a subgraph of $\overline{G^{\prime}}$, where $V=V^{\prime}$. Therefore,

$$
a(\bar{G}) \leq a\left(\overline{G^{\prime}}\right)
$$

which implies that

$$
b(G) \geq b\left(G^{\prime}\right)
$$

Finally, we obtain another bound on the algebraic connectivity and the independence number
Theorem 1.4. Let $G=(V, E)$ be a simple graph with independence number $\alpha(G) \geq 2$. Then, the algebraic connectivity satisfies

$$
a(G) \leq n-\alpha(G)
$$

Proof. Since G has an independent set of $\alpha(G)$ vertices, it follows that \bar{G} has $K_{\alpha(G)}$ as a subgraph. Since $b\left(K_{\alpha(G)}\right)=\alpha(G)$, the result follows from Lemma 1.3.

2 Exercises

I. Prove inequality 1
II. Identify a family of graphs for which the bound in Theorem 1.4 is sharp.

