Graph Theory

Thomas R. Cameron

March 27, 2024

1 Key Topics

Today, we introduce the maximum nullity of a graph. For further information and references, see [3]. Let G = (V, E) be a simple graph. Recall that the set of matrices associated with G is defined by

 $\mathcal{S}(G) = \left\{ A \in \mathbb{R}^{n \times n} \colon A^T = A, \ \forall i \neq j a_{ij} \neq 0 \Leftrightarrow \{i, j\} \in E \right\}.$

Also, recall that the nullity of a matrix A, denoted nullity (A), is the dimension of its null space, i.e., it is the maximum number of linearly independent null vectors of A. If A is symmetric, its nullity is equal to the multiplicity of its zero eigenvalue. Finally, recall that the rank of a matrix A, denoted rank (A), is the dimension of its column space, i.e., it is the maximum number of linearly independent column vectors of A. If A is symmetric, its rank is equal to the combined multiplicity of all non-zero eigenvalues. In fact, for all matrices A, rank (A) + nullity (A) = n.

Given G = (V, E), we define its maximum nullity by

$$M(G) = \max \{ \text{nullity}(A) : A \in \mathcal{S}(G) \}.$$

Furthermore, we define its *minimum rank* by

$$mr(G) = \min \{ \operatorname{rank}(A) : A \in \mathcal{S}(G) \}.$$

1.1 Families of Graphs

There is at least one graph where the maximum nullity is easy to find, i.e., the empty graph. Note that every matrix $A \in \mathcal{S}(E_n)$ is of the form

$$A = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & d_n \end{bmatrix},$$

where d_1, \ldots, d_n are arbitrary real numbers. Hence, if we choose $d_1 = \cdots = d_n = 0$, then A is the zero matrix, which has nullity n. Therefore, $M(E_n) = n$ and $mr(E_n) = 0$.

In fact, the empty graph is the only graph with with maximum nullity n. Indeed, suppose that G = (V, E) is a simple graph with M(G) = n. Then, there is an $A \in \mathcal{S}(G)$ with a zero eigenvalue of multiplicity n. By the spectral decomposition of symmetric matrices,

$$A = 0\mathbf{v}_1\mathbf{v}_1^T + \dots + 0\mathbf{v}_n\mathbf{v}_n^T,$$

where $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are orthonormal eigenvectors of A corresponding to the zero eigenvalue. Hence, A is the all zeros matrix, which implies that G must be the empty graph. We summarize this result in the following proposition.

Proposition 1.1. Let G = (V, E) be a simple graph of order $n \ge 1$. Then, $G \sim E_n$ if and only if M(G) = n.

1.2 Bounds on the Maximum Nullity

Let G = (V, E) be a simple graph and let L be the Laplacian matrix of G. Also, let k denote the number of connected components of G, then nullity (k) = k Hence,

$$M(G) \ge k$$
 and $mr(G) \le n-k$.

Another useful lower bound on M(G) (upper bound on mr(G) comes from the clique cover number of a graph. Recall that a clique of G is any subset of vertices $V' \subseteq V$ such that the induced subgraph G' = (V', E'), where

$$E' = \{\{u, v\} \colon u, v \in V', \ \{u, v\} \in E\},\$$

is a complete graph. Let V_1, \ldots, V_k denote cliques of G and let G_1, \ldots, G_k denote the corresponding subgraphs of G that are complete graphs. Then, G_1, \ldots, G_k denote a *clique cover* of G if every edge of G is contained in at least one G_i . The *clique cover number* of G, denoted cc(G), is the smallest number of cliques in a clique cover of G. The following bound was proven in [2]:

$$M(G) \ge n - cc(G)$$
 and $mr(G) \le cc(G)$.

Finally, we note that for trees, the maximum nullity is equal to the path cover number, this result was proven in [1]. A *path cover* of G is a collection of induced paths where every vertex in G is in exactly one path. The *path cover number* of G, denoted P(G), is the minimum number of induced paths to form a path cover of G.

2 Exercises

- I. Prove that $M(K_n) = n 1$. Is this the only family of graphs of order $n \ge 1$ with maximum nullity n 1.
- II. Use the clique cover number to determine lower and upper bounds on the maximum nullity and minimum rank, respectively, for the graph (left) in Figure 1.
- III. Use the path cover number to determine the maximum nullity (and minimum rank) of the tree (right) in Figure 1.

Figure 1: Graphs for exercise 2 and 3.

References

- F. BARIOLI, S. FALLAT, AND L. HOGBEN, Computation of minimal rank and path cover number for graphs, Linear Algebra Appl., 392 (2004), pp. 289–303.
- S. FALLAT AND L. HOGBEN, The minimum rank of symmetric matrices described by a graph: A survey, Linear Algebra Appl., 426 (2007), pp. 558–582.
- [3] L. HOGBEN, J. C.-H. LIN, AND B. SHADER, *Inverse Problems and Zero Forcing for Graphs*, AMS, Providence, Rhode Island, 2022.