Graph Theory

Thomas R. Cameron

March 29, 2024

1 Key Topics

Today, we continue our investigation of the maximum nullity of a graph and introduce the zero-forcing coloring game, which will lead to an upper bound on the maximum nullity. For further information and references, see [3].

Let $G=(V, E)$ be a simple graph. Recall that the set of matrices associated with G is defined by

$$
\mathcal{S}(G)=\left\{A \in \mathbb{R}^{n \times n}: A^{T}=A, \forall i \neq j a_{i j} \neq 0 \Leftrightarrow\{i, j\} \in E\right\} .
$$

Also, the maximum nullity of G is defined by

$$
M(G)=\max \{\operatorname{nullity}(A): A \in \mathcal{S}(G)\}
$$

and the minimum rank of G is defined by

$$
m r(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\}
$$

1.1 Zero-Forcing

Zero forcing is a coloring game on a graph, where vertices are either colored or non-colored. An initial set of colored vertices can force non-colored vertices to become colored following a color change rule. While there are many color change rules, see [3, Chapter 9], we will use the standard rule which states that a colored vertex u can force a non-colored vertex v if v is the only non-colored neighbor of u.

A zero forcing game on G corresponds to a collection of subsets $C^{(i)}$ and $C^{[i]}, i \geq 0$, where $C=C^{(0)}=C^{[0]}$ is the set of initially colored vertices, $C^{(i)}$ denotes the set of vertices that are forced at time step i, and $C^{[i]}$ denotes the set of all colored vertices after time step i. Note that

$$
C^{[i+1]}=C^{[i]} \cup C^{(i+1)}, i \geq 0
$$

Furthermore, every vertex of G is in exactly one set $C^{(i)}$ and if $v \in C^{(i+1)}$ then v must be forced by exactly one of its neighbors u such that u and all of its neighbors except for v are in $C^{[i]}$.

Since the graph is finite, there exists a $t \geq 0$ for which $C^{[t]}=C^{[t+i]}$, for all $i \geq 0$; we reference $C^{[t]}$ as the final coloring of C. The final coloring of C is also refereed to as the closure of C, denoted $\mathrm{cl}(C)$, for example see [2]. If $\operatorname{cl}(C)=V$, then we say that C is a zero forcing set of G. The zero forcing number of G is defined as

$$
\mathrm{Z}(G)=\min \{|C|: \operatorname{cl}(C)=V\}
$$

If C is a zero forcing set of G such that $\mathrm{Z}(G)=|C|$, we say that C is a minimum zero forcing set.
As an example, consider the zero-forcing game shown in Figure 1. Note that

$$
C=\{2,4,5\}, C^{[1]}=\{2,3,4,5\}, C^{[2]}=\{1,2,3,4,5,6\}
$$

Since $C^{[2]}=V$, we know that C is a zero-forcing set of G. Furthermore, since no set of 2 colored vertices can force the entire graph, it follows that $\mathrm{Z}(G)=3$. Also, note that $C=\{2,4,5\}$ is not the only minimum zero forcing set of G; for example, $C=\{1,4,5\}$ and $C=\{4,5,6\}$ are also minimum zero forcing sets. What are all the minimum zero forcing sets of G ?

Figure 1: Zero-forcing game on a graph

For $i \geq 0$, the vertices in $C^{(i+1)}$ were each forced by some vertex in $C^{[i]}$. If the vertex u forced the vertex v, we write $u \rightarrow v$. Given an initial coloring C, we let $\mathcal{F}(C)$ denote a set of forces that produce the final coloring. Note that there may be more than one set of forces that produce the final coloring. Given a set $\mathcal{F}(C)$ of forces, a forcing chain is a maximal sequence of vertices $\left(v_{1}, v_{2}, \ldots, v_{s}\right)$ such that for $i=1, \ldots, s-1$, $v_{i} \rightarrow v_{i+1}$. If $v_{1} \in C$ does not force, then $\left(v_{1}\right)$ is a forcing chain. For example, the zero-forcing game in Figure 1 may correspond to the set of forces

$$
\mathcal{F}=\{5 \rightarrow 3,2 \rightarrow 1,3 \rightarrow 6\}
$$

and the following forcing chains

$$
(5,3,6),(2,1),(4)
$$

What other set of forces could correspond to the zero-forcing game in Figure 1 and what are the implied forcing chains? No matter which set of forces we choose, the forcing chains induce a path cover of the graph G. Hence, $\mathrm{Z}(G) \geq P(G)$.

1.2 Families of Graphs

In this section, we state (and prove) several well-known results on the zero-forcing number for certain families of graphs. Most of these results were established in [1].

Theorem 1.1. a. $\mathrm{Z}\left(E_{n}\right)=n$
b. $\mathrm{Z}\left(K_{n}\right)=n-1$
c. $\mathrm{Z}\left(P_{n}\right)=1$
d. $\mathrm{Z}\left(C_{n}\right)=2$
e. For all trees $T, \mathrm{Z}(T)=P(T)$.

2 Exercises

I. Prove Theorem 1.1.
II. Which, if any, zero-forcing values characterize the graph.

References

[1] AIM Minimum Rank - Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra and its Applications, 428 (2008), pp. 1628-1648.
[2] B.Brimkov, C. C. Fast, and I. V. Hicks, Computational approaches for zero forcing and related problems, European Journal of Operational Research, 273 (2019), pp. 889-903.
[3] L. Hogben, J. C.-H. Lin, and B. Shader, Inverse Problems and Zero Forcing for Graphs, AMS, Providence, Rhode Island, 2022.

