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1 Key Topics

Today, we continue our investigation of the zero forcing number of a graph. For further information and
references, see [2].

Let G = (V, E) be a simple graph. Recall that zero forcing is a coloring game on G where an initial set
of colored vertices can force non-colored vertices to become colored. In particular, a colored vertex u can
force a non-colored vertex v if v is the only non-colored neighbor of u.

A zero forcing game on G corresponds to a collection of subsets C' and C, i > 0, and a collection of
forces F. In particular, C = C©) = C1% is the set of initially colored vertices, C9) denotes the set of vertices
that are forced at time step i, C) denotes the set of all colored vertices after time step i, and F denotes all
forces. Note that

cli+tl — ol |y C(Hl), i>0.

Furthermore, every vertex of G is in exactly one set C'¥ and if v € CU*+1) then v must be forced by exactly
one of its neighbors u such that « and all of its neighbors except for v are in Cl¥; in this case, the forcing
u— v isin F.

Since the graph is finite, there exists a ¢t > 0 for which C!! = Cltti for all i > 0; we reference Cl* as
the final coloring of C. The final coloring of C' is also refereed to as the closure of C, denoted cl(C). If
cl(C) =V, then we say that C' is a zero forcing set of G. The zero forcing number of G is defined as

Z(G) = min {|C| : ¢l (C) = V}.

If C is a zero forcing set of G such that Z(G) = |C|, we say that C is a minimum zero forcing set.

1.1 Zero Forcing on Trees

Given a set of forces F, a forcing chain is a maximal sequence of vertices (v1,...,vs) such that for ¢ =
1,...,8—1,v; = vir1. If v1 € C does not force, then (vy) is a forcing chain. Note that each chain induces
a path on G. Furthermore, if C is a zero forcing set, then every vertex is in exactly on chain. Hence, if C
is a zero forcing set, then a collection of forcing chains will induce a path cover of G of size |C|. Therefore,
Z(G) > P(G) is the path cover number of G. In what follows, we prove that this bound is sharp for trees.

Theorem 1.1 (Proposition 4.2 in [1]). Let T be a tree of order n > 1. Then, Z(T) = P(T).

Proof. We proceed via induction on P(T') to show that a zero forcing set of T' can be constructed by choosing
a minimum path cover and selecting either the initial or terminal vertex (not both) of each path. If P(T) = 1,
then this construction is obvious since T is a path graph of order n. Let £ > 1 and assume that such a zero
forcing set can be constructed for all trees with a path cover number of k. Let T denote a tree with a path
cover number of £+ 1 and choose a minimum path cover of T. Let C denote a set of initially colored vertices
consisting of one initial or terminal vertex (not both) of each path. Also, identify a path (denoted P’) in the
minimum path cover that is connected to the rest of T' (denoted T”) by a single edge {u, v}, where u € P’
and v € T".

Then, T” is a tree with P(T7) = k and ¢/ = CNV(T") is a zero forcing set of 7" by the induction
hypothesis. Since P’ has its initial or terminial vertex colored, all vertices up to v can be forced in P’. At
which point, the vertices in C’ can force all of T’. Finally, the vertex v can force the rest of the vertices in
P’. Therefore, C is a zero forcing set of T O



1.2 Zero Forcing and Maximum Nullity

Zero forcing was shown to be an upper bound on the maximum nullity of a graph [I]. The motivation behind
this result is the following observation.

Observation 1.2. Let G = (V, E) be a simple graph. If
e CCV,
e AcS(G),
e Ax =0,
e z;=0forallieC,
e ;€ (C,j¢C,and jis the only vertex in N(¢) that is not in C,

then z; = 0.

One can use this observation to apply the game of zero forcing on G to the process of forcing zeros in a
null vector of A € §(G). As an example, consider the zero-forcing game shown in Figure|[l] Note that

C =1{2,4,5}, cM ={2,3,4,5}, C1¥ ={1,2,3,4,5,6}.
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Figure 1: Zero-forcing game on a graph

Let A € S(G), where G is the graph in Figure [1} and let x be a null vector of A, where xz; = 0 for all
i € C. Then,
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Furthermore, row 5 of Ax = 0 implies that agszs = 0, which further implies that x3 = 0. Let
x = [z1, 0, 0, 0, 0, x¢]”.

Then, row 2 of Ax[Y] = 0 implies that as12z; = 0 and row 3 of Ax[! implies that asgzg = 0. Hence, 21 = 0
and xg = 0, which implies that x = 0.
In general, we have the following result.

Proposition 1.3. Let G = (V, E) be a simple graph and let C CV denote a zero-forcing set of G. Also, let
A € S§(GQ) and let x denote a null vector of A such that z; =0 for alli € C. Then, x = 0.
2 Exercises

I. Prove Proposition 1.3.
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