Graph Theory

Thomas R. Cameron

April 1, 2024

1 Key Topics

Today, we continue our investigation of the zero forcing number of a graph. For further information and references, see 2].

Let $G=(V, E)$ be a simple graph. Recall that zero forcing is a coloring game on G where an initial set of colored vertices can force non-colored vertices to become colored. In particular, a colored vertex u can force a non-colored vertex v if v is the only non-colored neighbor of u.

A zero forcing game on G corresponds to a collection of subsets $C^{(i)}$ and $C^{[i]}, i \geq 0$, and a collection of forces \mathcal{F}. In particular, $C=C^{(0)}=C^{[0]}$ is the set of initially colored vertices, $C^{(i)}$ denotes the set of vertices that are forced at time step $i, C^{[i]}$ denotes the set of all colored vertices after time step i, and \mathcal{F} denotes all forces. Note that

$$
C^{[i+1]}=C^{[i]} \cup C^{(i+1)}, i \geq 0
$$

Furthermore, every vertex of G is in exactly one set $C^{(i)}$ and if $v \in C^{(i+1)}$ then v must be forced by exactly one of its neighbors u such that u and all of its neighbors except for v are in $C^{[i]}$; in this case, the forcing $u \rightarrow v$ is in \mathcal{F}.

Since the graph is finite, there exists a $t \geq 0$ for which $C^{[t]}=C^{[t+i]}$, for all $i \geq 0$; we reference $C^{[t]}$ as the final coloring of C. The final coloring of C is also refereed to as the closure of C, denoted $\mathrm{cl}(C)$. If $\operatorname{cl}(C)=V$, then we say that C is a zero forcing set of G. The zero forcing number of G is defined as

$$
\mathrm{Z}(G)=\min \{|C|: \operatorname{cl}(C)=V\}
$$

If C is a zero forcing set of G such that $\mathrm{Z}(G)=|C|$, we say that C is a minimum zero forcing set.

1.1 Zero Forcing on Trees

Given a set of forces \mathcal{F}, a forcing chain is a maximal sequence of vertices $\left(v_{1}, \ldots, v_{s}\right)$ such that for $i=$ $1, \ldots, s-1, v_{i} \rightarrow v_{i+1}$. If $v_{1} \in C$ does not force, then $\left(v_{1}\right)$ is a forcing chain. Note that each chain induces a path on G. Furthermore, if C is a zero forcing set, then every vertex is in exactly on chain. Hence, if C is a zero forcing set, then a collection of forcing chains will induce a path cover of G of size $|C|$. Therefore, $\mathrm{Z}(G) \geq P(G)$ is the path cover number of G. In what follows, we prove that this bound is sharp for trees.

Theorem 1.1 (Proposition 4.2 in [1]). Let T be a tree of order $n \geq 1$. Then, $\mathrm{Z}(T)=P(T)$.
Proof. We proceed via induction on $P(T)$ to show that a zero forcing set of T can be constructed by choosing a minimum path cover and selecting either the initial or terminal vertex (not both) of each path. If $P(T)=1$, then this construction is obvious since T is a path graph of order n. Let $k \geq 1$ and assume that such a zero forcing set can be constructed for all trees with a path cover number of k. Let T denote a tree with a path cover number of $k+1$ and choose a minimum path cover of T. Let C denote a set of initially colored vertices consisting of one initial or terminal vertex (not both) of each path. Also, identify a path (denoted P^{\prime}) in the minimum path cover that is connected to the rest of T (denoted T^{\prime}) by a single edge $\{u, v\}$, where $u \in P^{\prime}$ and $v \in T^{\prime}$.

Then, T^{\prime} is a tree with $P\left(T^{\prime}\right)=k$ and $C^{\prime}=C \cap V\left(T^{\prime}\right)$ is a zero forcing set of T^{\prime} by the induction hypothesis. Since P^{\prime} has its initial or terminial vertex colored, all vertices up to v can be forced in P^{\prime}. At which point, the vertices in C^{\prime} can force all of T^{\prime}. Finally, the vertex v can force the rest of the vertices in P^{\prime}. Therefore, C is a zero forcing set of T.

1.2 Zero Forcing and Maximum Nullity

Zero forcing was shown to be an upper bound on the maximum nullity of a graph [1]. The motivation behind this result is the following observation.
Observation 1.2. Let $G=(V, E)$ be a simple graph. If

- $C \subseteq V$,
- $A \in \mathcal{S}(G)$,
- $A \mathrm{x}=0$,
- $x_{i}=0$ for all $i \in C$,
- $i \in C, j \notin C$, and j is the only vertex in $N(i)$ that is not in C,
then $x_{j}=0$.
One can use this observation to apply the game of zero forcing on G to the process of forcing zeros in a null vector of $A \in \mathcal{S}(G)$. As an example, consider the zero-forcing game shown in Figure 1 Note that

$$
C=\{2,4,5\}, C^{[1]}=\{2,3,4,5\}, C^{[2]}=\{1,2,3,4,5,6\} .
$$

Figure 1: Zero-forcing game on a graph
Let $A \in \mathcal{S}(G)$, where G is the graph in Figure 11 and let \mathbf{x} be a null vector of A, where $x_{i}=0$ for all $i \in C$. Then,

$$
A=\left[\begin{array}{cccccc}
d_{1} & a_{12} & 0 & 0 & 0 & 0 \\
a_{21} & d_{2} & a_{23} & 0 & 0 & 0 \\
0 & a_{32} & d_{3} & a_{34} & a_{35} & a_{36} \\
0 & 0 & a_{43} & d_{4} & 0 & 0 \\
0 & 0 & a_{53} & 0 & d_{5} & 0 \\
0 & 0 & a_{63} & 0 & 0 & d_{6} .
\end{array}\right] \text { and } \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
0 \\
x_{3} \\
0 \\
0 \\
x_{6}
\end{array}\right] .
$$

Furthermore, row 5 of $A \mathbf{x}=0$ implies that $a_{35} x_{3}=0$, which further implies that $x_{3}=0$. Let

$$
\mathbf{x}^{[1]}=\left[x_{1}, 0,0,0,0, x_{6}\right]^{T} .
$$

Then, row 2 of $A \mathbf{x}^{[1]}=0$ implies that $a_{21} x_{1}=0$ and row 3 of $A \mathbf{x}^{[1]}$ implies that $a_{36} x_{6}=0$. Hence, $x_{1}=0$ and $x_{6}=0$, which implies that $\mathbf{x}=0$.

In general, we have the following result.
Proposition 1.3. Let $G=(V, E)$ be a simple graph and let $C \subseteq V$ denote a zero-forcing set of G. Also, let $A \in \mathcal{S}(G)$ and let \mathbf{x} denote a null vector of A such that $x_{i}=0$ for all $i \in C$. Then, $\mathbf{x}=0$.

2 Exercises

I. Prove Proposition 1.3.

References

[1] AIm Minimum Rank - Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra and its Applications, 428 (2008), pp. 1628-1648.
[2] L. Hogben, J. C.-H. Lin, and B. Shader, Inverse Problems and Zero Forcing for Graphs, AMS, Providence, Rhode Island, 2022.

